Скорость и каналы передачи данных. Коммуникационная среда и передача данных

Любой сигнал можно рассматривать как функцию времени, или как функцию частоты. В первом случае эта функция показывает, как меняются впоследствии параметры сигнала, например, напряжение или ток. Если эта функция имеет непрерывный характер, то говорят о непрерывном сигнале. Если эта функция имеет дискретный вид, то говорят о дискретном сигнале.

Частотное представление функции основано на том факте, что любая функция может быть представлена в виде ряда Фурье

(1),
где - частота, an,bn – амплитуды n-ой гармоники.

Характеристику канала, который определяет спектр частот, которые физическая среда, из которой сделана линия связи, которая образует канал, пропускает без существенного снижения мощности сигнала, называют полосой пропускания .

Максимальную скорость, из которой канал способен передавать данные, называют пропускной способностью канала или битовой скоростью.

В 1924 Найквист открыл взаимосвязь между пропускной здатностью канала и шириной его полосы пропускания.

Теорема Найквиста

где – максимальная скорость передачи H - ширина полосы пропускания канала, выраженная в Гц, М - количество уровней сигнала, которые используются при передаче. Например, из этой формулы видно, что канал с полосой 3 кГц не может передавать двухуровневые сигналы быстрее 6000 бит/сек.

Эта теорема также показывает, что, например, бессмысленно сканировать линию чаще, чем удвоена ширина полосы пропускания. Действительно, все частоты выше этой отсутствуют в сигнале, а потому вся информация, необходимая для возобновления сигнала будет собрана при таком сканировании.

Однако, теорема Найквиста не учитывает шум в канале, который измеряется как отношение мощности полезного сигнала к мощности шума: S/N . Эта величина измеряется в децибелах: 10log10(S/N) dB . Например, если отношение S/N равняется 10, то говорят о шуме в 10 dB если отношение равняется 100, то - 20 dB .

На случай канала с шумом есть теорема Шенона, по которой максимальная скорость передачи данные по каналу с шумом равняется:
H log2 (1+S/N) бит/сек, где S/N - соотношение сигнал-шум в канале.

Здесь уже не важно количество уровней в сигнале. Эта формула устанавливает теоретический предел, который редко достигается на практике. Например, по каналу с полосой пропускания в 3000 Гц и уровнем шума 30 dB (это характеристики телефонной линии) нельзя передать данные быстрее, чем со скоростью 30 000 бит/сек.

Методы доступа и их классификация

Метод доступа (accessmethod ) – это набор правил, которые регламентируют способ получения в пользование (“восторгу”) среды передачи. Метод доступа определяет, каким образом узлы получают возможность передавать данные.
Выделяют следующие классы методов доступа:

  1. селективные методы
  2. состязательные методы (методы случайного доступа)
  3. методы, основанные на резервировании времени
  4. кольцевые методы.

Все методы доступа, кроме состязательных, образуют группу методов детерминированного доступа. При использовании селективных методов для того, чтобы узел мог передавать данные, он должен получить разрешение. Метод называется опросом (polling ), если разрешения передаются всем узлам по очереди специальным сетевым оборудованием. Метод называется передачей маркера (token passing ), если каждый узел по завершении передачи передает разрешение следующему.

Методы случайного доступа (random access methods ) основаны на “соревновании” узлов за получение доступа к среде передачи. Случайный доступ может быть реализован разными способами: базовым асинхронным, с тактовой синхронизацией моментов передачи кадров, с прослушиванием канала перед началом передачи (“слушай, прежде чем говорить”), с прослушиванием канала во время передачи (“слушай, пока говоришь”). Могут быть использованы одновременно несколько способов из перечисленных.
Методы, основанные на резервировании времени , сводятся к выделению интервалов времени (слотов), которые распределяются между узлами. Узел получает канал в свое распоряжение на всю длительность выделенных ему слотов. Существуют варианты методов, которые учитывают приоритеты - узлы из больше высоким приоритетам получают большее количество слотов.
Кольцевые методы используются в ЛВМ с кольцевой топологией. Кольцевой метод вставки регистров заключается в подключении параллельно к кольцу одного или нескольких буферных регистров. Данные для передачи записываются в регистр, после чего узел ожидает межкадрового промежутка. Потом содержимое регистра передается в канал. Если во время передачи поступает кадр, он записывается в буфер и передается после своих данных.

Различают клиент-серверные и одноранговые методы доступа.

Клиент-серверные методы доступа допускают наличие в сети центрального узла, который управляет всеми другими. Такие методы распадаются на две группы: с опросом и без опроса.

Среди методов доступа с опросом наиболее часто используемый “опрос с остановкой и ожиданием” и “непрерывный автоматический запрос на повторение” (ARQ). Во всяком случае первичный узел последовательно передает узлам разрешение на передачу данных. Если узел имеет данные для передачи, он выдает их в среду передачи, если нет - или выдает короткий пакет данных типа “данных нет”, или просто ничего не передает.

При использовании одноранговых методов доступа все узлы равноправные. Мультиплексна передача со временным делением - наиболее простая одноранговая система без приоритетов, что использует твердое расписание работы узлов. Каждому узлу выделяется интервал времени, в течение которого узел может передавать данные, причем интервалы распределяются поровну между всеми узлами.

Аналоговые каналы передачи данные.

Под каналом передачи данные (КПД) понимается совокупность среды передачи (среды распространения сигнала) и технических средств передачи между канальными интерфейсами. В зависимости от формы информации, которая может передавать канал, различают аналоговые и цифровые каналы.

Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или другие характеристики которого (например, амплитуда или частота) несут переданную информацию. Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

Лекции - Информатика и программирование - Лекции по информатике и программированию

6.1. КОММУНИКАЦИОННАЯ СРЕДА И ПЕРЕДАЧА ДАННЫХ

НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы; реализовывать сложную математическую и логическую обработку данных. Управление крупными пред­приятиями, управление экономикой на уровне страны требуют участия в этом процессе до­статочно крупных коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важ­ными и актуальными скорость и удобство обмена информацией, а также возможность тес­ного взаимодействия всех участвующих в процессе выработки управленческих решений.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Однако сложность решаемых задач об­ратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учи­тывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.


Принцип централизованной обработки данных (рис. 6.1) не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспе­чить необходимые временные параметры при диалоговой обработке данных в многопользо­вательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом, так как приходилось дублировать функции центральной ЭВМ, значительно увеличивая затраты на создание и эксплуатацию систем об­работки данных.

Рис. 6.1. Система централизованной обработки данных

Рис. 6.2. Система распределенной обработки данных

Появление малых ЭВМ, микроЭВМ и, наконец, персональных компьютеров потребо­вало нового подхода к организации систем обработки данных, к созданию новых информа­ционных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к рас­пределенной обработке данных (рис. 6.2).

Распределенная обработка данных - обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Дня реализации распределенной обработки данных были созданы многомашин­ные ассоциации, структура которых разрабатывается по одному из следующих на­правлений:

многомашинные вычислительные комплексы (МВК);

компьютерные (вычислительные) сети.

Многомашинный вычислительный комплекс - группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс.

Примечание. Под процессом понимается некоторая последовательность дейст­вий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:

локальными при условии установки компьютеров в одном помещении, не требу­
ющих для взаимосвязи специального оборудования и каналов связи;

дистанционными, если некоторые компьютеры комплекса установлены на зна­
чительном расстоянии от центральной ЭВМ и для передачи данных используются те­
лефонные каналы связи.

Пример 6.1. К ЭВМ типа мэйнфрейма, обеспечивающей режим пакетной обработки информации, подключена с помощью устройства сопряжения мини-ЭВМ. Обе ЭВМ находятся в одном машинном зале. Мини-ЭВМ обеспечивает подготовку и предвари­тельную обработку данных, которые в дальнейшем используются при решении слож­ных задач на мэйнфрейме. Это локальный многомашинный комплекс.

Пример 6.2. Три ЭВМ объединены в комплекс для распределения заданий, поступаю­щих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример 6.3. ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на цент­ ральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть - совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Примечание. Под системой понимается автономная совокупность, состоящая из одной или нескольких ЭВМ, программного обеспечения, периферийного оборудования, терминалов, средств передачи данных, физических процессов и операторов, способная осуществлять обработку информации и выполнять функции взаимодействия с другими системами.

Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделим ос­новные отличия компьютерной сети от многомашинного вычислительного комплекса.

Первое отличие - размерность. В состав многомашинного вычислительного ком­плекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, располо­женных на расстоянии друг от друга от нескольких метров до десятков, сотен и даже тысяч километров.

Второе отличие - разделение функций между ЭВМ. Если в многомашинном вы­числительном комплексе функции обработки данных, передачи данных и управления систе­мой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

Третье отличие - необходимость решения в сети задачи маршрутизации сообще­ний. Сообщение от одной ЭВМ к другой в сети может быть передано по различным ма­ршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Объединение в один комплекс средств вычислительной техники, аппаратуры связи и каналов передачи данных предъявляет специфические требования со стороны каждого эле­мента многомашинной ассоциации, а также требует формирования специальной терминоло­гии.

Абоненты сети - объекты, генерирующие или потребляющие информа­цию в сети.

Абонентами сети могут быть отдельные ЭВМ, комплексы ЭВМ, терминалы, про­мышленные роботы , станки с числовым программным управлением и т.д. Любой абонент сети подключается к станции.

Станция - аппаратура, которая выполняет функции, связанные с переда­чей и приемом информации.

Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.

Физическая передающая среда - линии связи или пространство, в кото­ром распространяются электрические сигналы, и аппаратура передачи дан­ных.

На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

Такой подход позволяет рассматривать любую компьютерную сеть как совокупность абонентских систем и коммуникационной сети. Обобщенная структура компьютерной сети приведена на рис.6.3.


Рис. 6.3. Обобщенная структура компьютерной сети

Классификация вычислительных сетей

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

глобальные сети (WAN - Wide Area Network);

региональные сети (MAN - Metropolitan Area Network);

локальные сети (LAN - Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в раз­личных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информа­ционных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на зна­чительном расстоянии друг от друга. Она может включать абонентов внутри большого го­рода, экономического региона, отдельной страны. Обычно расстояние между абонентами региональной вычислительной сети составляет десятки - сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в преде­лах небольшой территории. В настоящее время не существует четких ограничений на тер­риториальный разброс абонентов локальной вычислительной сети. Обычно такая сеть

привязана к конкретному месту. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.

Объединение глобальных, региональных и локальных вычислительных сетей позволя­ет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целе­сообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. На рис. 6.4 приведена одна из возможных ие­рархий вычислительных сетей. Локальные вычислительные сети могут входить как компо­ненты в состав региональной сети, региональные сети - объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные струк­туры.


Рис. 6.4. Иерархия компьютерных сетей

Пример 6.4. Компьютерная сеть Internet является наиболее популярной глобальной сетью. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в Internet , существуют конкретная структура связи и определенная дисциплина управления. Внутри Internet структура и методы соединений между раз­личными сетями для конкретного пользователя не имеют никакого значения.

Персональные компьютеры, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислитель­ных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информацион­ных технологий.

Практика применения персональных компьютеров в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычис­лительной техники обеспечивают не отдельные автономные ПК, а локальные вычисли­тельные сети.

ХАРАКТЕРИСТИКА ПРОЦЕССА ПЕРЕДАЧИ ДАННЫХ

Режимы передачи данных

Любая коммуникационная сеть должна включать следующие основные компоненты: пере­датчик, сообщение, средства передачи, приемник.

Передатчик - устройство, являющееся источником данных.

Приемник - устройство, принимающее данные.

Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.

Сообщение - цифровые данные определенного формата, предназначен-
ные для передачи

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.

Средства передачи - физическая передающая среда и специальная аппа­ратура, обеспечивающая передачу сообщений.

Для передачи сообщений в вычислительных сетях используются различные типы ка­налов связи. Наиболее распространены выделенные телефонные каналы и специальные ка­налы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.

Особняком в этом отношении стоят ЛВС, где в качестве передающей среды использу­ются витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхрониза­ции.

Режим передачи. Существуют три режима передачи: симплексный, полудуплексный и дуплексный.

Симплексный режим - передача данных только в одном направлении.

Примером симплексного режима передачи (рис. 6.5) является система, в которой ин­формация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычисли­тельных сетях симплексная передача практически не используется.

Полудуплексный режим - попеременная передача информации, когда источник и приемник последовательно меняются местами (рис. 6.6).

Яркий пример работы в полудуплексном режиме - разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.

Дуплексный режим - одновременные передача и прием сообщений.

Дуплексный режим (рис. 6.7) является наиболее скоростным режимом работы и позво­ляет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима - телефонный разговор.


Коды передачи данных

Для передачи информации по каналам связи используются специальные коды. Коды эти стандартизованы и определены рекомендациями ISO (International Organization for Stand ­ ardization ) - Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ).

Наиболее распространенным кодом передачи по каналам связи является код ASCII , принятый для обмена информацией практически во всем мире (отечественный аналог - код КОИ-7).

Следует обратить внимание еще на один способ связи между ЭВМ, когда ЭВМ объ­единены в комплекс с помощью интерфейсного кабеля и с помощью двухпроводной линии связи.

Примечание. Интерфейсный кабель - это набор проводов, по которым передаются сигналы от одного устройства компьютера к другому. Чтобы обеспе­чить быстродействие, для каждого сигнала выделен отдельный провод. Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом.

Для передачи кодовой комбинации используется столько линий, сколько битов эта комбинация содержит. Каждый бит передается по отдельному проводу. Это параллельная передача или передача параллельным кодом. Предпочтение такой передаче отдается при организации локальных МВК, для внутренних связей ЭВМ и для небольших расстоя­ний между абонентами сети. Передача параллельным кодом обеспечивает высокое быстро­действие, но требует повышенных затрат на создание физической передающей среды и обладает плохой помехозащищенностью. В вычислительных сетях передача параллельными кодами не используется.

Для передачи кодовой комбинации по двухпроводной линии группа битов передается по одному проводу бит за битом. Это передача информации последовательным кодом. Она, вполне естественно, медленнее, так как требует преобразования данных в параллельный код для дальнейшей обработки в ЭВМ, но экономически более выгодна для передачи сообщений на большие расстояния.

Типы синхронизации данных

Процессы передачи или приема информации в вычислительных сетях могут быть привяза­ны к определенным временным отметкам, т.е. один из процессов может начаться только после того, как получит полностью данные от другого процесса. Такие процессы называют­ся синхронными.

В то же время существуют процессы, в которых нет такой привязки и они могут вы­полняться независимо от степени полноты переданных данных. Такие процессы называют­ся асинхронными.

Синхронизация данных - согласование различных процессов во вре­мени. В системах передачи данных используются два способа передачи данных: синхронный и асинхронный.

При синхронной передаче (рис. 6.8) информация передается блоками, которые обрамляются специальными управляющими символами. В состав блока включаются также специальные синхросимволы, обеспечивающие контроль состояния физической передаю­щей среды, и символы, позволяющие обнаруживать ошибки при обмене информацией. В конце блока данных при синхронной передаче в канал связи выдается контрольная последо­вательность, сформированная по специальному алгоритму. По этому же алгоритму форми­руется контрольная последовательность при приеме информации из канала связи. Если обе последовательности совпадают - ошибок нет. Блок данных принят. Если же последова­тельности не совпадают - ошибка. Передача повторяется до положительного результата проверки. Если повторные передачи не дают положительного результата, то фиксируется состояние аварии.



Рис. 6.8. Синхронная передача данных

Синхронная передача - высокоскоростная и почти безошибочная. Она используется для обмена сообщениями между ЭВМ в вычислительных сетях. Синхронная передача тре­бует дорогостоящего оборудования.

При асинхронной передаче (рис. 6.9) данные передаются в канал связи как пос­ледовательность битов, из которой при приеме необходимо выделить байты для последую­щей их обработки. Для этого каждый байт ограничивается стартовым и стоповым битами, которые и позволяют произвести выделение их из потока передачи. Иногда в линиях связи с низкой надежностью используется несколько таких битов. Дополнительные стартовые и стоповые биты несколько снижают эффективную скорость передачи данных и соответст­венно пропускную способность канала связи. В то же время асинхронная передача не тре­бует дорогостоящего оборудования и отвечает требованиям организации диалога в вычислительной сети при взаимодействии персональных ЭВМ.


Рис. 6.9. Асинхронная передача данных

АППАРАТНАЯ РЕАЛИЗАЦИЯ ПЕРЕДАЧИ ДАННЫХ

Способы передачи цифровой информации

Цифровые данные по проводнику передаются путем смены текущего напряжения: нет на­пряжения - "0", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному ка­налу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количест­ве, но усложняет процесс управления обменом данными.


При цифровом или узкополосном способе передачи (рис. 6.10) дан­ные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычисли­тельные сети. Подавляющее число локальных вычислительных сетей использует узкополос­ную передачу.

Рис. 6.10. Цифровой способ передачи

Аналоговый способ передачи цифровых данных (рис. 6.11) обеспечивает широко­полосную передачу за счет использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несу­щей частоты для передачи по каналу связи цифровых данных.

Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

X = X max sin ((ω t + φ o ),

где X max - амплитуда колебаний;

ω - частота колебаний;

t - время;

φ o - начальная фаза колебаний.

Передать цифровые данные по аналоговому каналу можно, управляя одним из пара­метров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции): амплитудный, частотный, фазовый.

Проще всего понять принцип амплитудной модуляции: "0" - отсутствие сигна­ла, т.е. отсутствие колебаний несущей частоты; "1" - наличие сигнала, т.е. наличие колеба­ний несущей частоты. Есть колебания - единица, нет колебаний - нуль (рис. 6.11 а).

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной часто­те. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты (рис. 6. 11 б).

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1к 0 меняется фаза колебаний, т.е. их направление (рис. 6.11в).

В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача, которая предусматривает работу для каждого або­нента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие боль­шого количества абонентов при высокой скорости передачи данных.

Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука , что является необходимым требованием современных систем мультимедиа.

Пример 6.5. Типичным аналоговым каналом является телефонный канал. Когда або­нент снимает трубку, то слышит равномерный звуковой сигнал - это и есть сигнал несушей частоты. Так как он лежит в диапазоне звуковых частот, то его называют то­нальным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты - модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление произво­дят информационные байты - последовательность единиц и нулей.

Аппаратные средства

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечи­вает сопряжение с ЭВМ одного канала связи.

Кроме одноканальных адаптеров используются и многоканальные устройства - мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных - устройство сопряжения ЭВМ с не-
сколькими каналами связи._____________________________________________________________

Мультиплексоры передачи данных использовались в системах телеобработки дан­ных - первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появле­нии сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необ­ходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие - преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специ­альное устройство - модем.

Модем - устройство, выполняющее модуляцию и демодуляцию информа­ционных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, ком­мутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства - кон цен тр а торы.

Концентратор - устройство, коммутирующее несколько каналов связи на один путем частотного разделения

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства - по­вторители.

Повторитель - устройство, обеспечивающее сохранение формы и ампли­туды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м, а дистан­ционные - до2000м.

Рис. 6.11. Способы передачи цифровой информации по аналоговому сигналу: а - амплитудная модуляция; б - частотная; в - фазовая

Характеристики коммуникационной сети

Для оценки качества коммуникационной сети можно использовать следующие характерис­тики:

скорость передачи данных по каналу связи;

пропускную способность канала связи;

достоверность передачи информации;

надежность канала связи и модемов.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени - секунду.

Запомните! Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости - бод. Бод - число изменений состояния среды передачи в секунду. Так как каждое измене­ние состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используе­мых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей со­ставляет 300 - 9600 бит/с, а для синхронных - 1200 - 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в се­кунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени - секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая про­пускная способность определяется скоростью передачи данных. Реальная пропускная спо­собность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Запомните! Единица измерения пропускной способности кана­ла связи - знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достовер­ность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоя­щую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает не­обходимых требований.

Запомните! Единица измерения достоверности: количество ошибок на знак - ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10 -10 -7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказ­ной работы. Вторая характеристика позволяет более эффективно оценить надежность сис­темы.

Запомните! Единица измерения надежности: среднее время безотказной работы - час.

Доя вычислительных сетей среднее время безотказной работы должно быть достаточ­но большим и составлять, как минимум, несколько тысяч часов.

ЗВЕНЬЯ ДАННЫХ

Понятие звена данных

Пользователи вычислительных сетей работают с прикладными задачами, расположенными на абонентских ЭВМ, либо имеют доступ к сети с терминалов. Абонентские ЭВМ и терми­налы объединяются понятием оконечное оборудование данных (ООД). Для ра­боты друг с другом абоненты вычислительной сети должны быть соединены каналом связи и между ними должно быть установлено логическое соединение.

Звено данных - два или более абонентов вычислительной сети, соединен­ных каналом связи.

Задача коммуникационной сети - установить звено данных и обеспечить управление звеном данных при обмене информацией между абонентами сети. Существуют два типа звеньев данных: двухпунктовые, многопунктовые. В двухпунктовом звене данных к каждой точке канала связи подключена либо одна ЭВМ, либо один терминал (рис. 6.12).

В многопунктовом звене данных к одной точке канала связи может быть под­ключено несколько ЭВМ или терминалов (рис. 6.13). Многопунктовое звено позволяет сэ­кономить на каналах связи, но требует в процессе установления связи между абонентами выполнения дополнительной процедуры идентификации абонента. В двухпунктовом звене эта процедура не нужна, так как один канал соединяет только двух абонентов.


Рис. 6.12. Двухпунктовое звено данных


Рис. 6.13. Многопунктовое звено данных

Управление звеньями данных

При организации взаимодействия между абонентами в звене данных необходимо решить проблему управления процессом обмена сообщениями.

Используются два основных режима управления в звеньях данных: режим подчине­ния, режим соперничества.

В режиме подчинения одна из ЭВМ, входящих в звено данных, имеет преимуще­ство в установлении соединения. Эта ЭВМ обладает статусом центральной и инициирует процесс обмена сообщениями путем посылки другим абонентам управляющих последова­тельностей опроса.

Применяются два типа управляющих последовательностей. Если центральная ЭВМ хочет прочитать сообщения от другого абонента, то ему передается вначале управляющая последовательность опроса. Для организации такого режима управления звеном данных ис­пользуются специальные списки опроса: либо циклический, либо открытый.

При работе с циклическим списком после опроса последнего абонента осущест­вляется автоматический переход к началу списка.

При работе с открытым списком опрос заканчивается на последнем абоненте из списка. Дня перехода к началу списка необходимо выполнить дополнительную процедуру.

Режим подчинения удобен в сетях с централизованным управлением, прост в про­граммной реализации и не создает в сети ситуации столкновения запросов - одновремен­ной попытки установить связь со стороны двух абонентов. В то же время этот режим не удовлетворяет требованиям свойственного для сетей диалогового режима (посылка сообще­ний в любой момент времени любому абоненту).

Пример 6.6. С центральной ЭВМ соединены отдельными каналами связи периферий­ные ЭВМ. Обмен информацией между абонентами сети осуществляется через цент­ральную ЭВМ, которая периодически опрашивает их для получения сообщений или передает им свои сообщения. В каждый отдельный момент времени устанавливается двухпунктовое звено данных - "центральная ЭВМ - периферийная ЭВМ".

В сетях типичным режимом управления в звеньях данных является режим сопер­ничества. Он предусматривает для всех абонентов равный статус в инициативе начала обмена сообщениями. Таким образом обеспечивается высокая оперативность работы, но возникает проблема столкновения запросов в передающей среде. Если два абонента сети пытаются одновременно установить связь друг с другом, то происходит столкновение за­просов. Эту ситуацию необходимо каким-то образом разрешить. В сетях с такой дисципли­ной управления в звеньях данных вначале производится сброс состояния запроса на обеих ЭВМ, а затем посылаются повторные запросы, но с разной временной задержкой для каж­дого абонента.

Для локальных вычислительных сетей основным режимом управления в звеньях дан­ных является режим соперничества.

Основные формы взаимодействия абонентских ЭВМ

Самое существенное в работе вычислительной сети - определение набора функций, доступных ее абоненту.

Так как пользователи сети работают в определенных предметных областях и исполь­зуют сеть для решения своих прикладных задач, напомним, что такое процесс, и определим понятие прикладной процесс.

Процесс - некоторая последовательность действий для решения задачи, определяемая программой.

Прикладной процесс - некоторое приложение пользователя, реализован­ное в прикладной программе.

Отсюда следует, что взаимодействие абонентских ЭВМ в сети можно рассматривать как взаимодействие прикладных процессов конечных пользователей через коммуникацион­ную сеть.

Коммуникационная сеть обеспечивает физическое соединение между абонентскими ЭВМ - передачу сообщений по каналам связи. Для того чтобы могли взаимодействовать процессы, между ними должна существовать и логическая связь (процессы должны быть инициированы, файлы данных открыты).

Анализ работы вычислительных сетей позволяет установить следующие формы взаи­модействия между абонентскими ЭВМ:

терминал - удаленный процесс;

терминал - доступ к удаленному файлу;

терминал - доступ к удаленной базе данных;

терминал - терминал;

электронная почта.

Взаимодействие терминал - удаленный процесс предусматривает обра­щение с терминала одной из абонентских ЭВМ к процессу, находящемуся на другой або­нентской ЭВМ сети. При этом устанавливается логическая связь с процессом и проводится сеанс работы с ним. Можно запустить удаленный процесс, получить результаты обработки данных этим процессом. Возможна также работа в режиме консоли - трансляция команд сетевой операционной системы на удаленную ЭВМ.

При взаимодействии терминал - доступ к удаленному файлу можно открыть удаленный файл, модифицировать его или произвести транспортировку этого файла на любое внешнее устройство абонентской ЭВМ для дальнейшей работы с ним в ло­кальном режиме.

Работав режиме терминал - доступ к удаленной базе данных ана­логична предыдущей форме взаимодействия. Только в этом случае производится работа с базой данных в ее полном объеме в соответствии с правами доступа, которыми обладает данный пользователь вычислительной сети.

Взаимодействие терминал - терминал предусматривает обмен сообщения­ми между абонентами сети в диалоговом режиме. Сообщения могут посылаться как отдель­ным абонентам, так и группам абонентов сети. Длина сообщения не должна превышать некоторой установленной для данной сети величины (обычно - строка на экране термина­ла).

Форма взаимодействия электронная почта в последнее время стала очень распространенной. Каждый абонент имеет на своей ЭВМ "почтовый ящик". Это специаль­ный файл, в который записываются все поступающие в его адрес сообщения. Конечный пользователь может проверять в начале работы свой "почтовый ящик", выводить сообще­ния на печать и передавать сообщения в адрес других абонентов вычислительной сети.

Структурная схема, иллюстрирующая основные формы взаимодействия между або­нентскими ЭВМ в сети, приведена на рис. 6.14.

Примечание. Понятие терминал, используемое при изложении материала этого раздела, включает в себя и конечного пользователя абонентской ЭВМ, так как доступ к сети без терминала для него невозможен, без пользователя те­ряет смысл само существование сети.




Рис. 6.14. Формы взаимодействия абонентских ЭВМ

Управление – это целенаправленное воздействие на объект, которое обеспечивает его оптимальное (в определенном смысле) функционирование и количественно оценивается величиной критерия (показателя) качества. ] [ Это можно сделать совершенно бесплатно. Читайте .

Cтраница 1


Переданные данные потенциально некорректны. Причина: произошла ошибка ввода при чтении исходных данных. Действие системы: обработка исходных данных продолжается.  

Отражение переданных данных обратно к их источнику. Например, символы, набранные на клавиатуре терминала, подключенного к ЭВМ, смогут появиться на его экране только благодаря эхопередаче. Отражение может осуществляться локально (самим терминалом), модемом, включенным в линию передачи, связным процессором или же вычислительной машиной, к которой подключен терминал. Если отражение осуществляется самим терминалом, то такой режим его работы часто называют полудуплексным, хотя здесь больше подошел бы термин грешим локального отражениям. При дуплексной посимвольной передаче отражение производится вычислительной машиной Тем самым некоторые прикладные программы, такие как редактор, получают возможность определять необходимость отражения того или иного символа. Полудуплексный и (или) построчный режимы обычно предполагают использование локального отражения.  

На командном пункте переданные данные могут автоматически сравниваться с хранимой в памяти программой; сигнализация диспетчеру осуществляется только в том случае, если какая-либо транспортная единица отклонилась от графика.  

Формат кадра ТОМА.  

Общая допустимая задержка переданных данных в отдельном канале мобильной радиосвязи ограничена величиной 340 мс.  

Переменная d представляет бит переданных данных, который выглядит как уровень напряжения или логический элемент. Иногда более предпочтительным оказывается один из способов представления; читатель должен уметь различать это по контексту. Пусть двоичный 0 (или электрическое напряжение - 1) будет нулевым элементом при сложении. На рис. 8.20 показана условная функция распределения вероятностей при передаче сигнала по каналу AWGN, представленная как функция правдоподобия. На оси абсцисс показан полный диапазон возможных значений тестовой статистики дс, которая образуется в приемнике.  

При последующей передаче или обработке данных осществляется проверка соответствия переданных данных контрольным суммам или сводных показателей сводным значениям контрольных сумм. Обязательно используется арифметический (в том числе балансовый) и логический контроль сводных данных.  

Код текущего значения содержимого счетчика массива данных позволяет определить число правильно переданных данных и восстановить команду канала.  

С-быстродействие канала связи; (Мо, i,) - измеренное за интервал времени Т количество переданных данных в канале на основном маршруте Мо; т - число возможных обходных маршрутов.  


Поля ТХ (биты 6 - 5), ТВС (биты 4 - 3) и ТМС (биты 2 - 0) определяют условия окончания ПДП-пересылки по внешнему сигналу, числу переданных данных и результату маскированного сравнения соответственно. Каждое из этих условий можно задать отдельно или в любой комбинации. Если задаются два или три условия одновременно, то для того, чтобы определить, по какому из них закончилась пересылка, необходимо воспользоваться смещением. В § 4.3 было показано, как задать смещение 0 4 или 8 при определении любого из трех условий. Если причиной окончания послужило одновременное выполнение двух или трех условий, то канал выберет условие, которому Соответствует наибольшее смещение.  

Автономные (выделенные) каналы являются законченными устройствами и реализуют аппаратурным способом следующие основные функции: воспринимают командную информацию из процессора; выбирают адресные слова и команды канала из ОП, проверяют их корректность, расшифровывают и выполняют их; устанавливают логическую связь через интерфейс ввода-вывода с адресуемыми УВВ, адрес которого получают от ЦП и хранят на соответствующем регистре или получают от УВВ при обработке запроса от УВВ на обслуживание или на прерывание; посылают приказы и данные в УВВ и принимают сигналы управления, данные и информацию о состоянии от УВВ; обмениваются данными с ОП, осуществляя их буферизацию в канале, преобразование форматов данных, подсчет числа переданных данных; осуществляют контроль передаваемых данных и временных последовательностей в интерфейсах связи с, УВВ, с ОП, с ЦП; формируют требования на прерывание от УВВ и от канала в соответствии с их приоритетами, слива состояния канала и записывают их в ОП; осуществляют специальные режимы работы по командам ЦП и запросам от УВВ.  

В сетях передачи данных - организация взаимодействия, при которой к а-н а л ь н ы и уровень обеспечивает только посылку кадра одной или нескольким станциям сети и квитирование приема. Обеспечение целостности переданных данных (например, повторная передача неправильно переданных кадров) осуществляется на более высоком уровне.  

Связь передатчиков с компилятором осуществляется по кабелям с 29 жилами. Жилы кроме передачи цифровой информации используются для диспетчерской связи, контроля правильности переданных данных, сигнализации и т.п. Перфорация информации производится в 5, 6, 7 или 8-канальной ленте.  

Регистры в свою очередь могут содержать фактические данные или адреса только тех данных, которые имеют отношение к запрашивающей программе. Абсолютная программа должна знать формат передаваемых данных, чтобы иметь возможность обращаться к отдельным элементам области переданных данных.  

Аннотация: Классификации и основные виды модемов.

Модемы

Модем - это преобразователь сигналов, который является промежуточным звеном между компьютером и соединительной линией. Название модема происходит от двух слов: "Модулятор" и "Демодулятор". Как модулятор модем преобразует цифровые сигналы импульсов постоянного тока, используемые в компьютерных системах, в аналоговые сигналы, содержащие ту же информацию. Этот процесс и называется модуляцией .

Модулятор осуществляет модуляцию несущего сигнала, то есть изменяет его характеристики в соответствии с изменениями входного информационного сигнала, демодулятор осуществляет обратный процесс.

Модуляция формирование аналоговых сигналов, в которых закодирована цифровая информация .

Демодуляция представляет собой обратный процесс. Если посмотреть на образуемый сигнал с другой стороны - модем , как модулятор, получает аналоговые сигналы и преобразует их в начальную цифровую форму, содержащую переданную информацию.

Классификация модемов.

  • по типу
    • Аналоговые - наиболее распространенный тип модемов для обычных коммутируемых телефонных линий
    • ISDN - модемы для цифровых коммутируемых телефонных линий
    • DSL - используются для организации выделенных (некоммутируемых) линий используя обычную телефонную сеть. Отличаются от коммутируемых модемов кодированием сигналов. Обычно позволяют одновременно с обменом данными осуществлять использование телефонной линии в обычном порядке.
    • Кабельные - используются для обмена данными по специализированным кабелям - к примеру, через кабель коллективного телевидения по протоколу DOCSIS .
    • Радио
    • Спутниковые
    • PLC - используют технологию передачи данных по проводам бытовой электрической сети.
  • по типу используемого канала
    • модемы для коммутируемых каналов - наиболее распространенные использующиеся на коммутируемых телефонных линиях.
    • модемы для арендованных каналов - используются на выделенных линиях.
    • комбинированные - сочетающие в себе свойства двух предыдущих.
  • по скорости передачи информации
    • низкоскоростные модемы (до 1200 бит/с) -"первая волна" модемов
    • среднескоростные (от 1200 до 14400 бит/с) -как правило, модемы, произведенные до 1991 года.
    • высокоскоростные (>14400 бит/с) - большая часть современных модемов (за исключением специализированных, которым не требуются высокие скорости передачи данных и которыми можно пренебречь в пользу качества этой передачи).
  • по области применения
    • для передачи данных
    • факсимильные модемы (как правило интегрированные в факс-аппараты или отдельные устройства, обеспечивающие прием и передачу факсимильных сообщений со скоростью до 14400 бит/с)
    • комбинированные модемы (большинство модемов, использующихся в быту).
  • по исполнению
    • внутренние - плата вставляемая в слот на материнской плате компьютера. Подключение питания и соединение с компьютером внутренних модемов происходит непосредственно через шину. Это, с одной стороны, позволяет сэкономить на соединительных проводах, а с другой - ведет к замедлению работы компьютера, так как внутренний модем создает дополнительную нагрузку на центральный процессор.
    • внешние - отдельное устройство, питающееся от сети и имеющее разъемы для подключения телефонной линии и телефонного аппарата, соединяющееся шнуром с компьютером. На передней панели модема выведены светодиодные индикаторы, отображающие его состояние. Внутренний модем не позволяет осуществлять контроль его состояния, что удобно реализовано посредством ряда светодиодных индикаторов на лицевой панели внешнего модема, а эмуляционные программы потребляют часть и без того обильно используемых внутренним модемом ресурсов центрального процессора (около 10%), что не происходит при работе модема внешнего. При "зависании" внутреннего модема его нельзя перезагрузить отдельно - приходится прибегать к перезагрузке всего компьютера.
  • по реализации дополнительных функций
    • интеллектуальные модемы как правило современные типы модемов с возможностями управления их работой и установки конфигурации (т.е. скорости передачи, режима работы, типа синхронизации, протокола защиты от ошибок и др.).
    • голосовые модемы позволяют одновременно передавать данные и голос. В основном, в пользовательских моделях применяется метод аналоговой передачи потоков голоса и данных, разнесенных по частотам, получивший название ASVD ( Analogue Simultaneous Voice/Data) .
  • по средствам управления
    • аппаратные
    • программные все операции по кодированию сигнала, проверке на ошибки и управление протоколами реализованы программно и производятся центральным процессором компьютера. При этом в модеме находится аналоговая схема и преобразователи: АЦП, ЦАП, контроллер интерфейса (например USB ).

Основное отличие программного модема от аппаратного заключается в том, что часть его функций реализуется за счет центрального процессора компьютера и программного обеспечения. Зачастую от модема остается лишь кодек (сокращение от кодер-декодер), а все остальные функции выполняет драйвер, использующий ресурсы персонального компьютера.

Недостатки программных модемов: Достоинства программных модемов:
  1. Использование ресурсов центрального процессора. Любой аппаратный модем содержит в себе процессор, выполняющий все вычислительные операции.
  2. Зависимость модема от операционной системы (ОС) проявляется в наличии или отсутствии драйверов.
  1. Компактность. Для реализации софт- модема требуется лишь кодек и плата с двумя телефонными разъемами типа RJ-11 . Открываются широкие возможности для интеграции софт- модемов в материнские платы.
  2. Быстрая реализация новых функций и протоколов.
  3. Отсутствие привязки к шине ISA.
  4. Низкая стоимость. Для наращивания возможностей и реализации новых протоколов достаточно изменить соответствующим образом микропрограмму.

Естественно, что для нормальной деятельности, работающие в паре модемы должны осуществлять операции модуляции/демодуляции одинаковым образом, иначе информация, передаваемая между ними, будет необратимо искажена.

Несущая частота. По своей сути процесс модуляции представляет собой наложение одного сигнала на другой. Модем, как модулятор, начинает функционировать, генерируя постоянный сигнал, называемый несущей частотой , потому что с его помощью осуществляется передача информации. В большинстве систем несущая частота - это устойчивый сигнал постоянной амплитуды, фазы и частоты.

Информационный сигнал. Сигнал, который электрически смешивается с несущей частотой, моделируя ее по некоторому закону, называется информационным . Изменение информационного сигнала приводит к изменению несущего и выходного сигнала.

Модуляция. В основном электронные цепи могут быть настроены на обработку одной несущей частоты и отражение всех других, мультиплицированные модулированные сигналы могут посылаться через один канал связи. Помимо того, модуляция позволяет цифровой информации в форме постоянного тока быть переданной такими средствами, как телефонные системы, которые не могут обрабатывать сигналы постоянного тока.

В демодуляторах несущая частота отделяется, а закодированная информация представляется в своей первоначальной форме.

Последовательная передача данных означает, что данные передаются по единственной линии. При этом биты байта данных передаются по очереди с использованием одного провода. Для синхронизации группе битов данных обычно предшествует специальный стартовый бит, после группы битов следуют бит проверки на четность и один или два стоповых бита. Иногда бит проверки на четность может отсутствовать.

Форматы передачи данных определяют использование бита четности, стартовых и стоповых битов. Очевидно, что передатчик и приемник должны использовать один и тот же формат данных, иначе обмен не возможен. Скорость передачи данных должна быть одинаковой для передатчика и приемника.

Скорость передачи данных обычно измеряется в бодах (по фамилии французского изобретателя телеграфного аппарата Emile Baudot - Э. Бодо) или в количестве передаваемых битов в секунду. При этом учитываются и старт/стопные биты, а также бит четности. Величины "бод" и "бит/с" не всегда совпадают.

Все каналы связи и проходящие по ним сигналы характеризуются полосой пропускания. Эта характеристика определяет диапазон частот, который канал может передать или который может присутствовать в сигнале.

Аналоговые каналы тональной частоты характеризуются тем, что спектр передаваемого по ним сигнала ограничен диапазоном 300-3400 Гц Скорость передачи информации не может превышать ширины этого спектра, т.е. 3100 бод.

Электрический сигнал, распространяемый по каналу, характеризуется тремя параметрами: амплитудой, частотой и фазой . Изменение одного или совокупности этих параметров составляет физическую сущность процесса модуляции. Каждому информационному элементу соответствует фиксированный отрезок времени, на котором электрический сигнал имеет определенные значения своих параметров, характеризующих значение этого информационного элемента. Этот отрезок времени называется бодовым интервалом . Если кодируемый элемент соответствует одному биту информации (может принимать значения 0 и 1), то модуляционная скорость (линейная или бодовая) равна информационной, т.е. 1 бод = 1 бит/с. Но кодируемый элемент может соответствовать, например, двум битам информации. В этом случае информационная скорость может принимать совокупность значений 00, 01, 10 и 11. В общем же случае, когда на бодовом интервале кодируются n бит, информационная скорость будет превышать бодовую в n раз.

Уплотнение данных воспринимают как меру ускорения передачи информации. При посылке данные обрабатываются программой модема и уплотняются. При этом объединяются повторяющиеся данные, т.е. программа сокращает, например, последовательность знаков ВВВВВВ до 6 хВ . Средне статистически это наполовину сокращает количество передаваемых данных.

Дуплекс - описывает возможность канала связи одновременно передавать два сигнала, имеющих противоположные направления. Используя эти два канала, полнодуплексный модем может передавать и принимать информацию в одно и то же время. Для этого используются две несущих частоты, позволяющих одновременно получать и передавать информацию. Две несущие делят пополам имеющуюся полосу пропускания.

Полудуплекс . Альтернативой предыдущему режиму служит полудуплекс. В этом случае используется только один сигнал, а модем должен попеременно настраиваться на прием и передачу сигналов для организации двунаправленности разговора.

Эхо . Модем выдает символ в телефонную линию, а удаленный модем возвращает этот же символ первому, который затем отображается, подтверждая правильность передачи символа.

Охранная полоса . В режиме дуплекса полоса не просто делится на две. Два канала разделяются охранной полосой. Эта полоса представляет собой неиспользуемые частоты, изолирующие каналы и предохраняющие их от перекрытия отдельных несущих частот.

Способы модуляции . Различными модемами используются различные способы модуляции сигналов. Все они базируются на характеристиках несущей волны, которая может быть изменена для кодировки информации.

Используются три основные волновые характеристики : амплитудная, частотная и фазовая.

Амплитудная модуляция . Амплитуда - это сила сигнала или громкость тона передаваемого через телефонный провод. Изменение этой характеристики при кодировке передаваемой информации, называется амплитудной модуляцией. Одним из способов, с помощью которого цифровая информация может быть закодирована при амплитудной модуляции, является соотношение двух значений амплитуд в соответствии с цифровой информацией. Так цифровую информацию можно кодировать установкой максимальной мощности сигнала и нулевой мощностью. Эту характеристику телефонного сигнала легче всего изменять. Однако оба перехода могут накрываться шумами, поэтому амплитудная модуляция не используется в модемах.

Фазовая модуляция . Для кодирования информации в несущей частоте можно использовать и ее фазу. Не модулируемая частота содержит ряд идентичных волн, которые следуют друг за другом с одним шагом. Если же, например, одну волну задержать на ее длину, она придется точно на вершину следующей. Задержка одних волн без изменения их амплитуд или частот порождает изменение, называемое фазовым сдвигом. Установка волны сдвигает во времени ее по отношению к предшествующей. Таким образом, информация может быть закодирована путем сдвига фазы. Единица кодируется одним ее положением, а нуль - другим. Хотя этот способ модуляции используется в модемах связи более часто, он применяется в комбинации с другими технологиями.

Частотная модуляция . Цифровой сигнал можно также закодировать при помощи изменения частоты, например, большое значение можно закодировать высокой частотой, а малую амплитуду более низкой частотой. Такая технология называется частотной модуляцией и обычно используется в радиовещании. В большинстве случаев при частотной модуляции разные значения частот соответствуют цифровым нулю и единице

Коррекция ошибок . Быстродействующие модемы очень чувствительны к шумам. Возможность исправлять случайные ошибки при приеме и передаче файлов. Используемые в настоящее время и ранее протоколы коррекции ошибок применяются обычно вместе со способом сжатия данных. Параллельно с коррекцией ошибок используется Fallback -метод (метод нейтрализации ошибки), встроенный в некоторые протоколы (V.42, MNP -4 ). Как только количество ошибок превышает предельно допустимое значение, модемы совместно переходят на меньшую скорость передачи.

Все вычислительные сети являются результатом развития двух самых важных направлений в современном обществе. К этим научно-техническим сферам относятся компьютерные технологии и телекоммуникация.

Классификация сетей передачи данных

Все такие компьютерные сети представляют собой группу однотипных либо же разнотипных ЭВМ, которые распределены территориально. Соединяются они между собой при помощи сети передачи данных. Создаются они для того, чтобы:

  • получать вычислительные мощности;
  • сохранять большие объёмы данных;
  • получать общий доступ к той информации, которая территориально удалена;
  • увеличить базы данных и ПО;
  • снизить стоимость, которая затрачивается на обработку информации.

К основным характеристикам сети можно отнести следующее:

  • Время доставки сообщения.
  • Операционные возможности.
  • Производительность.
  • Цена обработки информации.

По типу передачи данных компьютерные сети классифицируются на широковещательные и сети с передачей от узла к узлу. В них передача осуществляется между узлами.

Топология сетей передачи данных

Конфигурация самой сети, а точнее, последовательность соединения её объектов и называется топологией. Основными типами тут являются:

  • Звезда. В данном случае сам сервер осуществляет обработку всех данных с подключённых к нему компьютеров. Все данные между любыми рабочими станциями проходят через основной узел в вычислительной сети по отдельным линиям. Пропускная способность в данном случае определяется мощностью самого узла. Топология «Звезда» является самой быстродействующей.
  • Кольцо. Тут все рабочие станции соединяются между собой по кругу. Все сообщения в такой топологической сети циркулируют по кругу. В данном случае присутствует возможность выполнить кольцевой запрос одновременно на все станции. Чем больше пользователей, тем продолжительнее происходит передача информации. В данном случае каждая такая рабочая станция должна участвовать в перемещении данных. И при выходе из строя хотя бы одной - весь процесс парализуется.
  • Шина. Передача информация в шинной топологической сети представляется в виде общей магистрали. Именно к ней и происходит подключение всех рабочих станций. При этом они могут вступать в работу и между собой. Особенностью такого типа сети является тот факт, что её работоспособность не зависит от состояния станций (рабочие либо нет). Их можно подсоединять и отсоединять в любое время, не нарушая сетевых процессов.

Принцип передачи данных в одноранговых сетях основывается на равноправии всех участников. В большинстве случаев тут может отсутствовать выделенный сервер. Именно поэтому каждый узел сети может выступать в качестве клиента и самого сервера. Данная организация даёт возможность сохранять работоспособность при любом сочетании доступных узлов.

Во время организации и работы предъявляются особые требования к сети передачи данных. Что сюда относится?

  • Безопасность.
  • Надёжность.
  • Высокая производительность.
  • Возможность масштабирования.
  • Современность.
  • Лёгкое управление.
  • Поддержка различных видов трафика.
  • Прозрачность.

Методы передачи данных в компьютерных сетях

Обмен информации между двумя узлами в сети может осуществляться при помощи трёх основных способов:

  • Симплексный. Это однонаправленная передача, к которой относится ТВ и радио.
  • Полудуплексная. В данном случае передача и приём выполняются поочерёдно.
  • Дуплексная. В этом двунаправленном методе каждая из станций способна выполнять все действия одновременно.

Протокол передачи данных

Это набор определённых соглашений, определяющих обмен информацией между программами. Протоколы передачи данных в компьютерных сетях задают способы доставки самого сообщения, а также обработки ошибок. Позволяют они разрабатывать и определённые стандарты, которые не относятся к конкретной аппаратной платформе.

Как и любая компьютерная сеть, интернет основан на огромном количестве компьютеров. Все они соединяются между собой при помощи проводов посредством спутниковой связи. Но этого для передачи данных недостаточно, так как передающей и принимающей стороне нужны определённого рода соглашения, с помощью которых регламентируется эта передача. Также им необходимо гарантировать тот факт, что всё пройдёт без искажений и потери информации. Этот набор правил и есть протоколы передачи данных в сети интернет. С его помощью осуществляется взаимодействие в интернете и выполняется обмен информацией в удобной форме.

Разные цели - различные протоколы. Какие они бывают?

  • TCP/IP. Протокол управления передачей для глобальной сети.
  • HTTP. С его помощью выполняется передача гипертекста.
  • РОР3.
  • FTP и многие другие.

Скорость передачи данных

Данный параметр показывает, сколько информации можно передать по одному каналу связи в течение определённого отрезка времени. Измеряют её в различных единицах. Это может быть килобит, мегабит и даже гигабит за одну секунду. Скорость передачи данных по локальной сети может составлять 100 Мбит/с либо же 1 Гбит/с. Не стоит путать это со скоростью самого интернета либо скачивания файлов и открытия страницы. Это скорость между двумя точками, соединёнными при помощи кабеля в сеть. Провод от вашего компьютера может идти в модем, роутер, другой ПК, к адаптеру самого провайдера. Сама же скорость передачи информации ограничивается не только лишь типом кабеля, но и жёстким диском компьютера.

Среда передачи данных в компьютерных сетях

Она представляет собой физическую среду, по которой происходит распространение информационных сигналов в виде электрических, световых и прочих импульсов. Они генерируются в виде аналоговых либо цифровых сигналов. Для пересылки их между компьютерами они должны быть физически переданы из одного места в другое. Сам физический путь и является средой передачи.

Каналы передачи данных по компьютерным сетям могут быть двух видов: кабель и беспроводное соединение. В первом случае передача информации осуществляется строго по определённому пути. Сами же кабеля могут быть следующих видов: витая пара, оптические и коаксиальные. В беспроводных же средах передача сигналов может выполняться благодаря различным излучениям. Примером могут послужить радиоволны, инфракрасное или микроволновое излучение и многое другое.

Все сигналы в сети передаются при помощи волн, независимо от самой среды. В случае с кабельной средой присутствуют электромагнитные волны с определённой частотой. Когда применяется оптический кабель, то сигналы передаются в виде световых волн. Они обладают большей частотой. А вот при использовании атмосферы применяются электромагнитные волны.

Более детально об этом и многом другом каждый желающий сможет узнать на предстоящей выставке «Связь» . Проходить она будет в центре Москвы, вблизи станции метро «Выставочная», на территории самого крупного выставочного комплекса ЦВК «Экспоцентр» . На данной выставке будут широко представлены инновационные технологии и современные решения для спутниковой, мобильной, оптико-волоконной и беспроводной связи, теле- и радиовещания, спутниковое ТВ и многое другое.


Top