Расчет радиатора транзистора. Расчет батарей отопления на площадь. А зачем он нужен

В малосигнальных схемах транзисторы редко рассеивают мощность более 100 мВт. Распространение тепла вдоль проводников и конвекция от корпуса транзистора в окружающий воздух оказываются достаточными, чтобы избежать перегрева /?-и-перехода.

Транзисторы, на которых рассеиваются большие мощности, - в эмиттерных повторителях мощных источников питания и в выходных каскадах усилителей мощности - требуют специальных средств для отвода тепла. Обычно теплоотводы (радиаторы) используются с транзисторами, которые приспособлены для работы с радиаторами. На рис. 9.35, а изображен гофрированный металлический радиатор, который удваивает рассеяние тепла транзистором в корпусе Т05, например, транзистором BFY50. Мощный транзистор (рис. 9.35, б) в корпусе ТОЗ монтируется на массивном ребристом радиаторе. Установленный таким образом транзистор допускает рассеяние мощности 30 Вт; без теплоотвода рассеиваемая мощность ограничена 3 Вт.

Рис. 9.35. Радиаторы.

Электрическая изоляция

Корпус радиатора обычно привинчивается непосредственно к заземленному металлическому шасси или к корпусу прибора, или в некоторых случаях шасси само может служить теплоотводом. Во всех этих случаях необходимо помнить, что корпус транзистора обычно соединен с коллектором, и поэтому необходима электрическая изоляция между корпусом транзистора и радиатором. Слюдяные или лавсановые шайбы обеспечивают изоляцию без значительного уменьшения теплопроводности. Силиконовая смазка, нанесенная на каждую сторону шайбы, гарантирует хороший тепловой контакт.

Тепловое сопротивление

Качество теплоотвода обычно выражается величиной теплового сопротивления, которое учитывает тот факт, что скорость распространения тепла пропорциональна разности температур между источником тепла и внешней средой (сравните с электрическим сопротивлением, в котором скорость движения заряда пропорциональна разности потенциалов. [Только с очень большой натяжкой можно уподобить электрический ток скорости движения зарядов. - Примеч. перев.]).

Как это часто бывает с физическими понятиями, единица теплового сопротивления (градусы Цельсия на ватт) подает хорошую идею для его формального определения, которое выглядит так:

Другими словами, корпус теплоотвода, имеющий тепловое сопротивление 3 °С/Вт, при рассеиваемой мощности 30 Вт будет нагреваться до температуры на 3 х 30 °С = 90 °С выше температуры окружающей среды.

Полную картину установившегося теплового равновесия между транзистором и окружающей средой дает тепловая схема, приведенная на рис. 9.36. Тепловая мощность Р, выделяемая транзистором, рассматривается как «генератор теплового тока», который создает разность температур на различных тепловых сопротивлениях в системе.

Максимально допустимая температура р-n-перехода обычно составляет 150 °С, а температуру окружающей среды можно принять равной 50 °С - это температура, при которой допускается работа электронной аппаратуры общего назначения.

Производители транзисторов указывают безопасную максимальную температуру корпуса для своих транзисторов (часто 125 °С), в этом случае в, с

Рис. 9.36. Тепловая схема транзистора и его окружения.

исключается из наших вычислений, и мы спускаемся на одну ступеньку вниз по лестнице из резисторов на рис. 9.36. Кроме того, теплопроводность от корпуса транзистора к радиатору обычно столь хороша, что 6 CS 6 SA , так что тепловое сопротивление между радиатором и воздухом 6 SA является доминирующим фактором в большинстве вычислений. Зная мощность Р, рассеиваемую транзистором, легко найти температуру корпуса T casc , предполагая, что температура окружающей среды равна 50 °С:

Сверяясь с данными производителя, теперь можно сказать, может ли этот транзистор рассеивать требуемую мощность при найденной температуре корпуса. Если это не так, то тепловое сопротивление 6 SA должно быть уменьшено путем применения большего радиатора.

Большие ребристые радиаторы для мощных транзисторов обычно имеют температурное сопротивление от 2 до 4 °С/Вт, которое можно уменьшить до 1 °С/Вт путем принудительного охлаждения. С другой стороны, у небольших радиаторов, рассчитанных на транзисторы в корпусе Т05, среднее значение теплового сопротивления около 50 °С/Вт, и с их помощью допустимую мощность рассеяния у таких транзисторов средней мощности, как BFY50 или 2N3053, увеличивают с 0,8 до 1,5 Вт.

Микросхема УМЗЧ обязательно должна быть установлена на радиаторе – ведь даже в состоянии покоя на ней рассеивается мощность, равная P0=UпI0=(2 25) 0,07=3,5 Вт. Чтобы рассчитать необходимую площадь радиатора, вычислим максимальную рассеиваемую мощность для случая работы в идеальном классе В:
где Uп – полное напряжение источника питания, Rн – сопротивление нагрузки, Р0 – мощность, рассеиваемая в режиме покоя.
При полном напряжении источника питания Uп =50 В, Rн =8 Ом на корпусе микросхемы должна рассеиваться мощность около 19,3 Вт. Ясно, что температура кристалла при работе всегда должна быть ниже 150ºС. Примем температуру окружающего воздуха 53 ºС, тогда тепловое сопротивление переход – окружающая среда должно быть меньше, чем: (150-53)/19,3=5,0 ºС/Вт.

Обычно сумма тепловых сопротивлений корпус – радиатор и радиатор – окружающая среда оказываются меньше, чем 2,0 ºС/Вт. Тепловое сопротивление корпус – радиатор зависит от способа установки микросхемы. Если использовано непосредственное соединение металл – металл, тепловое сопротивление будет примерно 1,0 ºС/Вт при использовании теплопроводной пасты и 1,2 ºС/Вт при ее отсутствии.

При наличии слюдяной прокладки между корпусом и радиатором тепловое сопротивление можно считать равным 1,6 ºС/Вт и 3,4 ºС/Вт соответственно при применении теплопроводной пасты и без нее. Рассмотрим для примера крепление микросхемы к радиатору через слюдяную прокладку с применением теплопроводной пасты. Тепловое сопротивление радиатора должно быть меньше чем 5,0 – 2,0 - 1,6 = 1,4 ºС/Вт. Это рекомендуемое тепловое сопротивление радиатора для данной конструкции.

Полезно оценить результаты расчетов радиатора с помощью какой-нибудь программы, например, . Самый прикидочный расчет площади охлаждающей поверхности радиатора: 20 квадратных сантиметров на каждый ватт рассеиваемой микросхемой мощности.
Для радиаторов, выполненных из алюминиевых сплавов с ребрами не тоньше 3 мм при шаге ребер не менее 10 мм и свободном потоке воздуха площадь радиатора можно оценить следующей приближенной формулой: S[кв см]≈600/Rθр-с[ºС/Вт]=600/1,4=430 кв см.
Как уже указывалось, микросхема LM1875 снабжена эффективной схемой тепловой защиты. Когда температура кристалла микросхемы достигнет 170 ºС, схема тепловой защиты срабатывает, и усилитель выключается. Включение происходит после понижения температуры кристалла до 145 ºС. Однако, если температура кристалла снова начнет повышаться, то теперь отключение произойдет уже при 150 ºС.

http://proacustic.ru/teplootvod.html

ОУ, выходная мощность которых превышает 1 Вт, обычно требуют установки теплоотвода (радиатора) для охлаждения кристалла. Напомню, что усилитель, работающий в режиме AB, имеет КПД около 50%. Это означает, что он выделяет столько же мощности в виде тепла, сколько отдает в нагрузку. Поэтому для охлаждения кристалла микросхемы (транзистора) необходимо использовать теплоотвод.

Максимальная температура, при которой кристалл близок к разрушению, но еще сохраняет работоспособность, составляет 150 °С. При этом температура корпуса ниже в связи с тепловыми потерями при переходе от кристалла к корпусу и, как правило, не превышает 100 °С. Нормальная температура кристалла составляет 75 °С, а радиатора -50-60 °С. Такая температура соответствует болевому порогу кожи человека, поэтому есть очень простое правило: если вы не обжигаетесь, коснувшись радиатора рукой, его температура находится в норме (конечно, при условии хорошего контакта между радиатором и тепловыделяющим элементом).

Стоит также отметить, что срок службы микросхемы напрямую зависит от ее температуры. Существует правило, гласящее, что при увеличении температуры кристалла на 10 °С срок его службы падает вдвое. Это значит, что при увеличении температуры кристалла с 60 до
100 °С срок его службы снизится уже в 1 б раз! Поэтому эффективное.охлаждение - залог надежной и долгой работы устройства.

Радиаторы, используемые для охлаждения радиоэлементов, классифицируются по строению на:

Ребристые (рис. 2.17, а);

Игольчатые (рис. 2.17, б).
По типу вентиляции:

С естественной вентиляцией;

С принудительной вентиляцией.

Эти типы радиаторов отличаются плотностью расположения ребер или игл. Для радиаторов с естественной вентиляцией расстояние между ребрами (иглами) должно быть не менее 4 мм. К тому же такие радиаторы рассчитаны для работы только в вертикальном положении, когда воздух под действием естественных сил движется между ребрами. Если расстояние между ребрами (иглами) составляет около 2 мм, то такой радиатор рассчитан на принудительную вентиляцию и требует установки вентилятора.

По применяемым материалам:

Цельные алюминиевые;

Цельные медные;

Алюминиевые с медным основанием.

Существуют методики точного расчета радиаторов, учитывающие рассеиваемую мощность, параметры окружающей среды, конфигурацию, материал радиатора и т.д. Однако эти методики нужны на этапе проектирования теплоотвода. Радиолюбители редко самостоятельно изготавливают радиаторы, чаще используя готовые, взятые из старой радиоаппаратуры. В конечном итоге нас интересует только один параметр - максимальная рассеиваемая мощность для этого радиатора. Чтобы определить его, достаточно знать всего две характеристики: тип
вентиляции и площадь рассеивающей поверхности (проще говоря, площадь радиатора).

Площадь ребристого радиатора вычисляется как сумма площадей всех его ребер и площади основания. Заметьте, что у одного ребра две излучающие поверхности. Это значит, что ребро размером 1×1 см имеет площадь 2 см2. Площадь игольчатого радиатора вычисляется как сумма площадей всех его игл и площади основания. Площадь одной иглы можно вычислить по формуле:

S= π (r 1 + r 2 ) l

(r 1 - радиус нижнего основания усеченного конуса; r 2 - радиус верхнего основания усеченного конуса; l - образующая усеченного конуса (длина боковой стороны))

После этого допустимая рассеиваемая мощность может быть оценена по формуле:

где Р - допустимая рассеваемая мощность, Вт; S - площадь радиатора, см2; к - коэффициент, учитывающий тип вентиляции. Для естественной вентиляции к = 33, для принудительной вентиляции к = 11.

Тепловое сопротивление радиатора может быть оценено по формулеRth=(51*k)/S , описанной здесь: http://forum.cxem.net/index.php?showtopic=32031

Размерность теплового сопротивления - градус/Ватт. То есть насколько температура кристалла будет выше температуры корпуса при выделении 1 Вт тепла.
Тепловое сопротивление перехода корпус - окружающая среда можно посчитать по приблизительной формуле:
Rth=(51*k)/S , где Rth – тепловое сопротивление радиатора в C/W, S – площадь радиатора (в данном случае - площадь детали) в см2, k – коэффициент, учитывающий тип вентиляции (Для естественной вентиляции k = 33, для принудительной вентиляции k = 11).
Тепловые сопротивления детали и радиатора нужно сложить, задать температуру окружающей среды и выделяемую мощность, чтобы получить температуру кристалла.
Чтобы не ломать сильно голову по поводу теплопроводности материалов, скажу что тепловое сопротивление перехода кристалл - корпус обычно находится в пределах от 1 C/W для мощных ИС, и до 3 C/W для маломощных.

В последние годы в радиолюбительской практике все чаще применяются системы охлаждения для процессоров персональных компьютеров (cooler - кулеры). Кулеры современных процессоров рассчитаны на рассеивание мощности около 100 Вт даже при небольшой вентиляции.

Для крепления микросхемы к основанию радиатора можно использовать шурупы с плоской шляпкой либо, при наличии метчика, нарезать резьбу в радиаторе и закрепить микросхему винтом. Между основанием радиатора и корпусом микросхемы обязательно должен быть слой термопасты для улучшения теплопроводности. Наилучшие показатели теплопроводности показывают пасты типа КПТ-81 или «Алсил-3». Их можно купить в любом компьютерном магазине или магазине радиодеталей. Теплопроводность термопаст составляет при-
мерно 0,7- с учетом того, что площадь контакта - 1 -2 см2, тепловое сопротивление термопасты - примерно 10~4 °С/Вт (несоизмеримо мало по сравнению с тепловым сопротивлением перехода кристалл-подложка либо радиатора и окружающей среды), поэтому при тепловом расчете системы охлаждения этой потерей можно пренебречь.

http://forum.cxem.net/index.php?showtopic=32031

Что бы совсем разобратся нужно на конкретном примере. К примеру есть ИМС длина 2см ширина 1см толщина 0,5 см Мощность 535 мВт Температура воздуха 22 по цельсию. Как считать?

  1. Определяем излучающую площадь микросхемы. Учтем, что она брюхом скорее всего будет прилегать к плате, так что там конвекции не будет. Возьмем эквивалентную площадь брюха как ½ от геометрической площади:
    2(2*0,5)+2(1*0,5)+1*2+1*1=2+1+2+1=6 см2 – полная излучающая площадь микросхемы
    2. Подсчитаем тепловое сопротивление перехода корпус – воздух:
    Rth=(51*k)/S=(51*33)/6=280,5 C/W
    3. Микросхема судя по всему маломощная, прими её тепловое сопротивление равным 3 C/W (или можно рассчитать точно, если знаете как)
    4. Общее тепловое сопротивление равно 280,5+3=283,5 C/W Это значит что температура кристалла будет на 283,5 градуса выше температуры окр. среды при выделении 1 Вт. тепла.
    5. Определяем температуру кристалла: 283,5*0,535+22=173 =)
    6. Определяем температуру корпуса: 280,5*0,535+22=172

    Резонный вопрос – есть ли здесь ошибка? Ошибка может быть в определении Rth корпуса микросхемы... эта формула используется для определения теплового сопротивления ребристых радиаторов, по этому в области малых значений площади может давать не верный результат. Еще недостатком методики является то, что мы не учитываем охлаждения микросхемы через саму плату.

    P.S. хотя если предположить, что микросхема обдувается (k=11). то получается вполне вменяемый результат - 93 C/W

Нередко, проектируя мощное устройство на силовых транзисторах, или прибегая к использованию в схеме мощного выпрямителя, мы сталкиваемся с ситуацией, когда необходимо рассеивать очень много тепловой мощности, измеряемой единицами, а иногда и десятками ватт.

К примеру IGBT-транзистор FGA25N120ANTD от Fairchild Semiconductor, если его правильно смонтировать, теоретически способен отдать через свой корпус порядка 300 ватт тепловой мощности при температуре корпуса в 25 °C! А если температура его корпуса будет 100 °C, то транзистор сможет отдавать 120 ватт, что тоже совсем немало. Но для того чтобы корпус транзистора в принципе смог отдать это тепло, необходимо обеспечить ему надлежащие рабочие условия, чтобы он раньше времени не сгорел.

Все силовые ключи выпускаются в таких корпусах, которые можно легко установить на внешний теплоотвод - радиатор. При этом в большинстве случаев металлическая поверхность ключа или другого устройства в выводном корпусе, электрически соединена с одним из выводов данного устройства, например с коллектором или со стоком транзистора.

Так вот, задача радиатора как раз и состоит в том, чтобы удержать транзистор, и главным образом его рабочие переходы, при температуре, не превышающей максимально допустимую.

Андрей Повный

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Сразу скажем - научно-обоснованной методики для расчета охлаждающих радиаторов не существует. По этому поводу можно написать не одну диссер­тацию или монографию (и написаны, и много), но стоит изменить конфигу­рацию охлаждающих ребер или стержней, расположить радиатор не верти­кально, а горизонтально, приблизить к нему любую другую поверхность сни­зу, сверху или сбоку - все изменится, и иногда кардинально. Именно поэто­му производители микропроцессоров или процессоров для видеокарт предпочитают не рисковать, а снабжать свои изделия радиаторами с вентиля­тором - принудительный обдув, даже слабенький, повышает эффективность теплоотвода в десятки раз, хотя большей частью это совершенно не требует­ся (но они поступают по закону «лучше перебдеть, чем недобдеть», и это правильно). Здесь мы приведем только пару-другую эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать пассивные (то есть без обдува) радиаторы для подобных усилителей или для аналоговых источников питания, о которых пойдет речь в следующей главе.

Рис. 8.4. Типичный пластинчатый радиатор

Сначала рассмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. На рис. 8.4 схематично показан типичный пластинчатый радиа­тор. Для расчета его площади нужно к площади его основания прибавить суммарную площадь его ребер (также с каждой стороны). Если нижней сто­роной радиатор прижимается к плате, то лучше считать рабочей только одну сторону основания, но мы предположим, что радиатор «висит» в воздухе (как часто и бывает) и поэтому площадь основания удваивается: Socn-‘^-LyLi. Площадь одного ребра (тоже с двух сторон) Sp = 2-Lyh, но к этой величине нужно еще прибавить боковые поверхности ребра, площадь которых равна SQoK = 2’hd. Ребер всего 6, поэтому общая площадь радиатора будет равна S = Soctt + 6-5р + б-б’бок. Пусть L1 = 3 см, I2 = 5 см, Л = 3 см, 5 = 0,2 см, тогда общая площадь такого радиатора будет 145 см^. Разумеется, это приближен­ный расчет (мц не учли, скажем, боковую поверхность основания), но для наших целей точность и не требуется.

Вот два эмпирических способа для расчета рассеиваемой мощности в зави­симости от площади поверхности, и пусть меня не слишком строго осудят за то, что никаких особенных научных выкладок вы здесь не увидите.

Способ первый и наипростейший: площадь охлаждающего радиатора должна составлять Юсм^ на каждый ватт выделяющейся мощности. Так что радиа­тор с приведенными на рис. 8.4 размерами, согласно этому правилу может рассеять 14,5 Вт мощности- как раз под наш усилитель с некоторым запа­сом. И если вас не жмут размеры корпуса, то вы вполне можете ограничиться этим прикидочным расчетом.

Рис. 8.5. Эффективный коэффициент теплоотдачи ребристого радиатора в условиях свободной конвекции при различной длине ребра: 1 - /7 = 32 мм; 2 - /7 = 20 мм; 3 - /7 = 12,5 мм

Для оценки тепловой мощности радиатора можно использовать формулу Ж=азфф-е.5,где:

W- мощность, рассеиваемая радиатором, Вт;

Аэфф- эффективный коэффициент теплоотдачи, Вт/м^°С (см. график на рис. 8.5);

0 - величина перегрева теплоотдающей поверхности, °С, Q = Т^- Tq^ (Гс- средняя температура поверхности радиатора, Гос - температура окружающей среды);

S- полная площадь теплоотдающей поверхности радиатора, м1

Обратите внимание, что площадь в эту формулу подставляется в квадратных метрах, а не сантиметрах.

Итак, приступим: сначала зададимся желательным перегревом поверхности, выбрав не слишком большую величину, равную 30 °С. Грубо говоря, можно считать, что при температуре окружающей среды 30 °С, температура поверх­ности радиатора составит 60 °С. Если учесть, что разница между температу­рой радиатора и температурой кристалла транзистора или микросхемы при хорошем тепловом контакте (о котором ниже) может составить примерно 5 °С, то это приемлемо для практически всех полупроводниковых приборов. Высота ребер h у нас составляет 30 мм, поэтому пользуемся верхней кривой на графике рис. 8.5, откуда узнаем, что величина коэффициента теплоотдачи составит примерно 50 Вт/м^°С. После вычислений получим, что W = 22 Вт. По простейшему правилу ранее мы получили 14,5 Вт, то есть, проведя более точные расчеты, мы можем несколько уменьшить площадь, тем самым сэко­номив место в корпусе. Однако повторим, если место нас не жмет, то лучше всегда иметь запас.

Радиатор следует располагать вертикально, и ребра также должны распола­гаться вертикально (как на рисунке), а поверхность его следует покрасить в черный цвет. Я еще раз хочу напомнить, что все эти расчеты очень приблизи­тельны, и даже сама методика может измениться, если вы поставите радиатор не вертикально, а горизонтально или снабдите радиатор игольчатыми ребра­ми вместо пластинчатых. К тому же мы никак не учитываем здесь тепловое сопротивление переходов кристалл-корпус и корпус-радиатор (просто пред­положив, что разница температур составит 5 °С).

Тем не менее, указанные методы дают хорошее приближение к истине, но если мы не обеспечим хороший тепловой контакт, все наши расчеты могут пойти насмарку. Просто плотно прижать винтом транзистор к радиатору, ко­немно, можно, но только в том случае, если поверхность радиатора в месте прижима идеально плоская и хорошо отшлифована. Практически этого нико­гда не бывает, поэтому радиатор в месте прижима смазывают специальной теплопроводящей пастой. Ее можно купить в магазинах, а иногда тюбик с такой пастой прикладывают к «кулерам» для микропроцессоров. Смазывать надо тонким, но равномерным слоем, не перебарщивать в количестве. Если на один радиатор ставятся два прибора, у которых коллекторы находятся под разным напряжением^ то под корпус нужно проложить изолирующую про­кладку, под крепежные винты - изолирующие пластиковые шайбы, а на са­ми винты надеть отрезок изолирующей кембриковой трубки длиной, равной толщине радиатора в месте отверстия (рис. 8.6).

Рис. 8.6. Крепление транзистора в корпусе ТО-220 к радиатору при необходимости его изоляции: 1 - радиатор; 2 -- отверстие в радиаторе; 3 - изолирующие шайбы; 4 - стягивающий винт; 5 - гайка; 6 - изолирующая трубка; 7 - слюдяная прокладка; 8 - пластмассовая часть корпуса транзистора; 9 - металлическая часть корпуса транзистора; 10 - выводы транзистора

Самые удобные изолирующие прокладки- слюдяные, очень хороши про­кладки из анодированного алюминия (но за ними надо внимательно следить, чтобы не процарапать тонкий слой изолирующего окисла) и из керамики (ко­торые, впрочем, довольно хрупки и могут треснуть при слишком сильном на­жиме). Кстати, за неимением фирменных прокладок можно использовать тон­кую фторопластовую (но не полиэтиленовую, разумеется!) пленку, следя за тем, чтобы ее не прорвать. При установке на прокладку теплопроводящая паста наносится тонким слоем на обе поверхности - и на транзистор, и на радиатор.


Top