Оздоровление воздушной среды. Очистка воздуха от пыли. Сухая очистка от пыли Схема сухой очистки воздуха от пыли

Компьютер – это то место, где мы проводим большое количество времени, не только дома, но и на работе. Компьютер, как и любая другая техника, нуждается в периодической чистке. Системный блок гудит как самолет, залапанный монитор, крошки и волоски в клавиатуре… Пора навести порядок.

Для чего нужно чистить компьютер от пыли

Все дело в пыли – она мешает вентиляции. Компьютер будет постоянно перегреваться, так как горячий воздух не сможет выходить из системного блока. Пыль сбивается в комки и мешает работать вентиляторам (кулерам), которые охлаждают процессор. Повышение температуры вызовет торможение компьютера, зависание, а иногда и отключение.

Как часто нужно производить чистку компьютера от пыли

Некоторые годами не чистят компьютер и не имеют проблем, другим же приходится чистить системный блок 2 раза в год. Все зависит от помещения, где стоит компьютер. Рассматривая обычную квартиру, мы рекомендуем чистить ПК 1 раз в год. Если вы заметили, что компьютер ведет себя подозрительно: тормозит, зависает, повышается температура процессора – в первую очередь почистите аппарат от пыли.

Чистим системный блок компьютера от пыли

Для вашего понимания и наглядности, мы составили правильную последовательность действий:

  • Системный блок нужно отключить от комплектующих (колонок, мышки, клавиатуры и монитора) и от электропитания.
  • Достаньте системный блок и положите его на бок. Так вы получите максимальный доступ.
  • Нужно снять боковую крышку системного блока. Крепление стандартное: 2 болта, закрученные с тыльной стороны компьютера. Подготовьте крестовую отвертку для откручивания. Когда вы снимите крышку, отложите болтики так, чтобы вы их не потеряли.
  • Проверьте каждый элемент на силу крепления. Детали должны неподвижно сидеть на своих местах. Элементы, которые не прикреплены и не подключены нужно достать, иначе их засосет пылесосом. Если вы хотите выполнить капитальную чистку со снятием всех комплектующих, то предварительно сфотографируйте системный блок изнутри. В противном случае вы рискуете забыть, как, что и куда вставлялось.

  • Наденьте на пылесос узкую насадку и очистите всю площадь системного блока. Обратите внимание, трубку нужно держать на расстоянии 1 сантиметр от плат. Если вы выполняете чистку впервые, то можете установить минимальную мощность втягивания. Так вы не будете переживать, что повредите компьютер.
  • Ту пыль, которая не всосалась, нужно прочистить кисточкой.
  • Можете пройтись влажной тряпочкой по периметру блока питания.
  • Завершив борьбу с пылью, закрепите все элементы на место и закройте крышку системного блока. Дайте ему подсохнуть от влаги 20 минут.

Чистка монитора компьютера от пыли

Монитор нужно периодически чистить от пятен. Для этого предназначены специальные влажные салфетки и прочие средства. Их можно купить в любом магазине компьютерной и мобильной техники. Существует более доступный способ: возьмите махровую тряпочку для чистки очков, намочите ее теплой водой и протрите монитор. Ни в ком случае нельзя протирать монитор спиртом. Дело в том, что некоторые мониторы покрыты антибликовым покрытием, которое можно повредить.

  • Не ставьте системный блок впритык к стенке. Оптимальное расстояние – 5-10 сантиметров, что будет способствовать нормальной вентиляции и недопущению перегрева процессора.
  • Каждый раз, выполняя влажную уборку в комнате, протирайте пыль за системным блоком. Систематическая влажная уборка позволяет уменьшить количество накапливаемой внутри аппарата пыли.
  • Все советуют чистить компьютер 1 раз в год, но если вы лишний раз откроете системный блок и посмотрите, как там обстоят дела, хуже не станет.

Чистка компьютера от пыли позволяет снизить шум работы компьютера и предотвратить выход компонентов из строя. Чтобы избежать дополнительных финансовых растрат, периодически открывайте крышку системного блока и осматривайте его состояние. Кстати, не забывайте выполнять еще и программную чистку Windows, так как мусор бывает не только внешним, но и внутренним.

Очистка воздуха от пыли может производиться как при подаче наружного воздуха в помещение, так и при удалении из него запыленного воздуха. В первом случае обеспечивается защита работающих в производственных помещениях, а во втором — защита окружающей атмосферы.

Универсальных пылезадерживающих устройств, пригодных для любых видов пыли и для любых начальных концентраций, не существует. Каждое из этих устройств пригодно для определенного вида пыли, начальной концентрации и требуемой степени очистки.

Важным показателем работы обеспыливающего оборудования является коэффициент очистки воздуха, который определяется по формуле

Kф = ((q1-q2)/q1)100%,

где q1 и q2 — содержание ныли до и после очистки, мг/м3.

Очистка воздуха от пыли может быть грубой, средней и тонкой. При грубой очистке воздуха задерживается крупная пыль (размером частиц > 100 мкм). Такую очистку можно использовать, например, как предварительную для сильно запыленного воздуха при многоступенчатой очистке. При средней очистке задерживается пыль с размером частиц до 100 мкм, а ее конечное содержание не должно быть более 100 мг/м3. Тонкой является такая очистка, при которой задерживается очень мелкая пыль (до 10 мкм) с конечным содержанием в воздухе приточных и рециркуляционных систем до 1 мг/м3.

Обеспыливающее оборудование подразделяется на пылеуловители и фильтры.

Пылеуловители. Пылеуловители — это устройства, действие которых основано на использовании для осаждения частиц пыли сил тяжести или инерционных сил, отделяющих пыль от воздушного потока при изменении скорости (в пылеосадочных камерах) и направления его движения (одиночные и батарейные циклоны, инерционные и ротационные пылеуловители).

Пылеуловители применяют при содержании пыли в удаляемом воздухе более 150 мг/м3.

Пылеосадочные камеры. Эти камеры применяют для осаждения крупной и тяжелой пыли с размером частиц более 100 мкм (рис. 11, а). Скорость пыльного воздуха в поперечном сечении камеры принимается небольшой — около 0,5 м/с для того, чтобы пыль могла осесть в камере раньше, чем она покинет ее. Поэтому габариты камер получаются довольно большими, что ограничивает их применение, несмотря на очевидные достоинства — малое гидравлическое сопротивление, дешевая эксплуатация и простота ухода.

Эффективность очистки можно увеличить (до 80—95%), если камеру выполнить лабиринтного типа (рис. И, б), хотя это влечет за собой увеличение гидравлического сопротивления.

Инерционные пылеуловители. Такой пылеуловитель (рис. 11, в) представляет собой набор усеченных конусов 1, установленных после довательно таким образом, что между ними образуются щели 2. Пыльный воздух поступает через отверстие 5. Пылеотделение основано на изменении направления движения пыльного воздуха, при этом взвешенные частицы пыли, имеющие значительно большую силу инерции, чем чистый воздух, продолжают двигаться в прежнем осевом направлении к узкому отверстию 4, а чистый воздух выходит через щели 2.

Циклоны. Их применяют для грубой и средней очистки от сухой неволокнистой и неслипающейся пыли. Пылеотделение в циклонах основано на принципе центробежной сепарации. Попадая в циклон по касательной через входной патрубок 1 (рис. 11, г), воздушный поток приобретает вращательное движение по спирали и, опустившись до дна конической части 2, выходит наружу через центральную трубу 3. Под действием центробежных сил частицы пыли отбрасываются к стенке циклона и, увлекаемые воздушным потоком, опускаются на дно циклона, а оттуда удаляются в пылесборник. Эффективность очистки увеличивается (до 90%) при уменьшении размеров циклона, поскольку величина центробежной силы обратно пропорциональна расстоянию частиц пыли от оси циклона. Поэтому вместо одного циклона большого размера ставят параллельно два или более циклонов меньших размеров — так называемые батарейные циклоны.

Из-за возможного возгорания и взрывов пыли в циклонах их устанавливают вне производственных помещений.

Для очистки воздуха с большим содержанием пыли используют циклоны с водяной пленкой, создаваемой на его внутренней поверхности.

Ротационные пылеуловители (ротоклоны). Эти пылеуловители представляют собой центробежный вентилятор (рис. 11, д), который одновременно с перемещением воздуха очищает его от крупных частиц пыли (> 10 мкм) благодаря силам инерции, возникающим при вращении рабочего колеса.

Пыльный воздух поступает во всасывающее отверстие 1. При вращении колеса 2 пылевоздушная смесь движется по межлопаточным каналам колеса, при этом частицы пыли под действием центробежных сил и сил Кориолиса прижимаются к поверхности диска колеса и к набегающим сторонам лопаток колеса. Пыль с очень небольшим количеством воздуха (3—5%) поступает через зазор 8 между колесом 2 и диском колеса в кольцеобразный приемник 5, а очищенный воздух — в улитку 4 и выходной патрубок 9. Обогащенная пылью смесь через патрубок 5 поступает в бункер б, в котором пыль оседает, а освободившийся от нее воздух через отверстие 7 снова возвращается в пылеприемник 3. В бункере 6 пыль увлажняется.

Ротоклоны находят применение в пыльных производствах, например в литейном. Они обеспечивают сравнительно высокую эффективность очистки: для частиц пыли от 8 до 20 мкм — 83%, а для более крупных — до 97%.

Рис. 11. Пылеотделители: а, б — пылеосадочные камеры; в — жалюзийный пылеотделитель; г — циклон; д — ротоклон

Фильтры. Фильтры — это устройства, в которых запыленный воздух пропускается через пористые, сетчатые материалы, а также через конструкции, способные задерживать или осаждать пыль.

В качестве фильтрующих материалов применяют стекловату, гравий, кокс, металлическую стружку, пористую бумагу или ткань, тонкую металлическую сетку, фарфоровые или металлические полые кольца. В зависимости от применяемого материала фильтры имеют соответствующее название — матерчатые, бумажные и т. п.

Бумажные фильтры. Фильтрующим материалом в них является гофрированная, пористая бумага (целлюлозная вата) или так называемая шел ковка (шелковистая пористая бумага), сложенная в 4— 10 листов и закладываемая в специальные кассеты. Такие кассеты устанавливаются в ячейки металлического каркаса. Эффективность очистки бумажных фильтров очень высокая — до 98—99%. Эти фильтры используют для очистки воздуха, подаваемого в помещение.

Для того чтобы кассеты периодически освобождались от части осаждаемой пыли, производят встряхивание фильтра.

Матерчатые фильтры. На рис. 12, а показан рукавный самовстряхивающийся фильтр типа ФВ с обратной продувкой. Он состоит из нескольких секций, в каждой из которых размещены 18 рукавов диаметром 135 мм.

Фильтр работает следующим образом: запыленный воздух через патрубок 1 поступает в корпус 2, общий для всех рукавов, откуда попадает в рукава 3, и, проходя через ткань последних, на ее поверхности оставляет пыль. Очищенный воздух через клапанные коробки 4 выходит из фильтра.

Периодическое встряхивание рукавов фильтра производится механизмом 7, а обратная продувка — переменной положения клапана 8. Пыль удаляется в пылесборник 5 с выпускным клапаном 6 при помощи шнека 9. Для тонкой и практически полной очистки воздуха (99,9%) в ряде производств используются фильтры из ткани ФПП.

Масляные фильтры. Такие фильтры применяют для очистки воздуха, подаваемого в помещение при малых концентрациях пыли (до 20 мг/м3).

Ряд конструкций представляет собой кассету, обтянутую сеткой и заполненную фарфоровыми или медными кольцами, гофрированными сетками (рис. 12, б). Эта кассета перед установкой в сеть опускается в веретенное или вазелиновое масло.

Частицы пыли, проходя с воздухом через лабиринт отверстий, образуемых кольцами или сетками, задерживается на их смоченной поверхности. Эффективность очистки достигает 95—98%.

Рис. 12. Фильтры:

а — матерчатый рукавный самовстряхивающийся; б — кассетный масляный; в — самоочищающийся масляный

В настоящее время широкое распространение получили самоочищающие масляные фильтры (рис. 12, в), в которых фильтрация осуществляется двумя непрерывно движущимися полотнами 2 из металлической сетки. Нижняя часть полотна на 150 мм погружена в масло, находящееся в ванне 1.

При загрязнении масляных фильтров кольца и сетки промывают в содовом растворе.

Электрические фильтры. Фильтры применяют для очистки воздуха и газа от мелкодисперсной пыли. Работа электрофильтров основана на создании сильного электрического поля при помощи выпрямленного тока высокого напряжения (50— 100 кВ), подводимого к коронирующим электродам (рис. 13, а). При прохождении пыльного газа или воздуха через фильтр происходит ионизация частиц пыли, т. е. образование положительных и отрицательных ионов. Пыль, получившая заряд от отрицательного коронирующего электрода, стремится осесть на положительном электроде, которым являются заземленные стенки фильтра и специальные осадительные электроды. Эти электроды периодически встряхиваются при помощи специального механизма, а осевшая пыль собирается в бункере, откуда удаляется.

Ультразвуковой фильтр. В таких фильтрах (рис. 13, б), применяемых для тонкой очистки, под влиянием ультразвука высокой интенсивности происходит коагуляция мельчайших частиц пыли. Образующиеся крупные частицы затем осаждаются в обычных пылеуловителях, например в циклонах.

Рис. 13. Фильтры:

а — электрический; б — ультразвуковой; 1 — изолятор; 2 — стенки фильтра; 3 — коронирующий электрод; 4 — заземление; 5 — генератор ультразвука; 6 — циклон

Эффективность очистки составляет 90% при действии ультразвука в течение 3—5 с.

Если требуемая эффективность очистки, достигается в одном пылеуловителе или фильтре, то такая очистка называется одноступенчатой. При большой начальной запыленности воздуха для получения требуемой чистоты используют двухступенчатую очистку. Например, если первой ступенью очистки воздуха является циклон, то в качестве второй может служить матерчатый фильтр и т. д.

Правильная эксплуатация фильтров (своевременная очистка, промывка и т. п.) имеет большое значение для эффективной работы вентиляции.

Пыль и грязь по праву считаются врагами №1 для компьютерного железа. Их можно справедливо винить в снижении производительности системы, тормозах, внезапных перезагрузках, перегреве и выходе из строя комплектующих. Особенно проблема актуальна в летний период, когда толстый слой пыли и без того ухудшает теплопроводность систем охлаждения.

Многие люди боятся лазить внутрь системного блока, предпочитая игнорировать проблему до достижения критического момента. Результатом бездействия станет необходимость оплачивать дорогостоящий ремонт в сервисном центре или заменять один из компонентов системы. А ведь могли бы просто потратить десять минут свободного времени на чистку. Процедура довольно простая.

Отключите системный блок от электропитания и других подключенных к нему устройств. Снимите с него боковую крышку. Если хотите провести максимально эффективную чистку, стоит снять некоторые компоненты – жесткий диск, видеокарту и пр. Это облегчит доступ к отдаленным углам блока.

Возьмите отвертку и снимите располагающиеся внутри корпуса вентиляторы (кулеры). С процессором обычно проблем не возникает. Современные системы охлаждения оснащены механизмом крепления при помощи зажима, который «отщелкивается» руками вместе с радиатором.

Теперь, когда вы немного освободили пространство внутри корпуса, можно приступать к очистке поверхности от пыли. Делать это лучше всего при помощи плоской кисточки с длинным ворсом или специального баллона со сжатым воздухом, который обычно продается в любом компьютерном магазине. Использовать для этой цели пылесос строго запрещается – неосторожное с ним обращение может привести к повреждениям хрупких компонентов, кроме того, нередки ситуации, когда мелкие детали засасывает внутрь сильным потоком воздуха.

Влажной тряпкой можно пользоваться для чистки корпуса с внутренней и внешней стороны, очистки от пыли вентиляторов, но вот системные платы и прочую электронику лучше обходить стороной – она чувствительна к воде. Тряпкой также можно случайно погнуть или оторвать мелкую деталь.

Одним из наиболее труднодоступных мест в системном блоке стал блок питания. Разбирать его не рекомендуется даже опытному пользователю ПК, не говоря уже о новичках. Тут стоит ограничиться продуванием его снаружи с использованием баллона со сжатым воздухом.

В конце остается только установить все компоненты на их привычные позиции, тщательно их закрепив. Если использовалась влажная чистка, рекомендуется подождать 15-20 минут. Пусть все просохнет.

Описанную выше процедуру достаточно проводить раз в пару месяцев – этого будет достаточно, чтобы обеспечить беспроблемную работу комплектующих. Также следует хотя бы каждые полгода смазывать вентиляторы и менять термопасту на процессоре.

Отличного Вам дня!


Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

Выбор метода и аппарата для улавливания аэрозолей в первую очередь зависит от их дисперсного состава табл. 1

Таблица 1. Зависимость аппарата для улавливания от размера частиц

Размер частиц, мкм Аппараты Размер частиц, мкм Аппараты
40 – 1000 Пылеосадительные камеры 20 – 100 Скрубберы
20 – 1000 Циклоны диаметром 1–2 м 0,9 – 100 Тканевые фильтры
5 – 1000 Циклоны диаметром 1 м 0,05 – 100 Волокнистые фильтры
0,01 – 10 Электрофильтры

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный, инерционный и центробежный.

Инерционные пылеуловители . При резком изменении направления движения газового потока частицы пыли под воздействием инерционной силы будут стремиться двигаться в прежнем направлении и после поворота потока газов выпадают в бункер. Эффективность этих аппаратов небольшая. (рис. 1)

Жалюзийные аппараты . Эти аппараты имеют жалюзийную решетку, состоящую из рядов пластин или колец. Очищаемый газ, проходя через решетку, делает резкие повороты. Пылевые частицы вследствие инерции стремятся сохранить первоначальное направление, что приводит к отделению крупных частиц из газового потока, тому же способствуют их удары о наклонные плоскости решетки, от которых они отражаются и отскакивают в сторону от щелей между лопастями жалюзи В результате газы делятся на два потока. Пыль в основном содержится в потоке, который отсасывают и направляют в циклон, где его очищают от пыли и вновь сливают с основной частью потока, прошедшего через решетку. Скорость газа перед жалюзийной решеткой должна быть достаточно высокой, чтобы достигнуть эффекта инерционного отделения пыли. (рис. 2)

Обычно жалюзийные пылеуловители применяют для улавливания пыли с размером частиц >20 мкм.

Эффективность улавливания частиц зависит от эффективности решетки и эффективности циклона, а также от доли отсасываемого в нем газа.

Циклоны . Циклонные аппараты наиболее распространены в промышленности.

Рис. 1 Инерционные пылеуловители: а – с перегородкой; б – с плавным поворотом газового потока;в - с расширяющимся конусом.

Рис. 2 Жалюзийный пылеуловитель (1 – корпус; 2 – решетка)

По способу подвода газов в аппарат их подразделяют на циклоны со спиральными, тангенциальным и винтообразным, а также осевым подводом. (рис. 3) Циклоны с осевым подводом газов работают как с возвратом газов в верхнюю часть аппарата, так и без него.

Газ вращается внутри циклона, двигаясь сверху вниз, а затем движется вверх. Частицы пыли отбрасываются центробежной силой к стенке. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести, поэтому даже весьма маленькие частицы пыли не в состоянии следовать за газом, а под влиянием центробежной силы движутся к стенке. (рис. 4)

В промышленности циклоны подразделяются на высокоэффективные и высокопроизводительные.

При больших расходах очищаемых газов применяют групповую компоновку аппаратов. Это позволяет не увеличивать диаметр циклона, что положительно сказывается на эффективности очистки. Запыленный газ входит через общий коллектор, а затем распределяется между циклонами.

Батарейные циклоны – объединение большого числа малых циклонов в группу. Снижение диаметра циклонного элемента преследует цель увеличения эффективности очистки.

Вихревые пылеуловители. Отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

В аппарате соплового типа запыленный газовый поток закручивается лопаточным завихрителем и движется вверх, подвергаясь при этом воздействию трех струй вторичного газа, вытекающих из тангенциально расположенных сопел. Под действием центробежных сил частицы отбрасываются к периферии, а оттуда в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз, в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей безвозвратный спуск пыли в бункер. Вихревой пылеуловитель лопаточного типа отличается тем, что вторичный газ отбирается с периферии очищенного газа и подается кольцевым направляющим аппаратом с наклонными лопатками. (рис. 5)

Рис. 3 Основные виды циклонов (по подводу газов): а – спиральный; б – тангенциальный; в-винтообразный; г, д – осевые

Рис. 4. Циклон: 1 – входной патрубок; 2 – выхлопная труба; 3 – цилиндрическая камера; 4 – коническая камера; 5 – пылеосадительная камера

В качестве вторичного газа в вихревых пылеуловителях может быть использован свежий атмосферный воздух, часть очищенного газа или запыленные газы. Наиболее выгодным в экономическом отношении является использование в качестве вторичного газа запыленных газов.

Как и у циклонов, эффективность вихревых аппаратов с увеличением диаметра падает. Могут быть батарейные установки, состоящие из отдельных мультиэлементов диаметром 40 мм.

Динамические пылеуловители . Очистка газов от пыли осуществляется за счет центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса тягодутьевого устройства.

Наибольшее распространение получил дымосос-пылеуловитель. Он предназначен для улавливания частиц пыли размером >15 мкм. За счет разности давлений, создаваемых рабочим колесом, запыленный поток поступает в «улитку» и приобретает криволинейное движение. Частицы пыли отбрасываются к периферии под действием центробежных сил и вместе с 8–10% газа отводятся в циклон, соединенный с улиткой. Очищенный газовый поток из циклона возвращается в центральную часть улитки. Очищенные газы через направляющий аппарат поступают в рабочее колесо дымососа-пылеуловителя, а затем через кожух выбросов в дымовую трубу.

Фильтры. В основе работы всех фильтров лежит процесс фильтрации газа через перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.

В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса: фильтры тонкой очистки, воздушные фильтры и промышленные фильтры.

Рукавные фильтры представляют собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов в каждой из секций производится поочередно. (рис 6)

Волокнистые фильтры. Фильтрующий элемент этих фильтров состоит из одного или нескольких слоев, в которых однородно распределены волокна. Это фильтры объемного действия, так как они рассчитаны на улавливание и накапливание частиц преимущественно по всей глубине слоя. Сплошной слой пыли образуется только на поверхности наиболее плотных материалов. Такие фильтры используют при концентрации дисперсной твердой фазы 0,5–5 мг/м 3 и только некоторые грубоволокнистые фильтры применяют при концентрации 5–50 мг/м 3 . При таких концентрациях основная доля частиц имеет размеры менее 5–10 мкм.

Различают следующие виды промышленных волокнистых фильтров:

– сухие – тонковолокнистые, электростатические, глубокие, фильтры предварительной очистки (предфильтры);

– мокрые – сеточные, самоочищающиеся, с периодическим или непрерывным орошением.

Процесс фильтрации в волокнистых фильтрах состоит из двух стадий. На первой стадии уловленные частицы практически не изменяют структуры фильтра во времени, на второй стадии процесса в фильтре происходят непрерывные структурные изменения вследствие накопления уловленных частиц в значительных количествах.

Зернистые фильтры . Применяются для очистки газов реже, чем волокнистые фильтры. Различают насадочные и жесткие зернистые фильтры.

Полые газопромыватели. Наиболее распространены полые форсуночные скрубберы. Они представляют колонну круглого или прямоугольного сечения, в которой осуществляется контакт между газом и каплями жидкости. По направлению движения газа и жидкости полые скрубберы делят на противоточные, прямоточные и с поперечным подводом жидкости. (рис. 7)

Насадочные газопромыватели представляют собой колонны с насадкой навалом или регулярной. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой концентрации.

Рис. 5 Вихревые пылеуловители: а – соплового типа: б – лопаточного типа; 1 – камера; 2– выходной патрубок; 3 – сопла; 4– лопаточный завихритель типа «розетка»; 5 – входной патрубок; 6– подпорная шайба; 7 – пылевой бункер; 8 – кольцевой лопаточный завихритель

Рис. 6 Рукавный фильтр: 1 – корпус; 2 –встряхивающее устройство; 3 – рукав; 4 – распределительная решетка

Газопромыватели с подвижной насадкой имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Насадкой могут быть кольца, седла и т.д. Плотность шаров насадки не должна превышать плотности жидкости. (рис. 8)

Скрубберы с подвижной шаровой насадкой конической формы (КСШ) . Для обеспечения стабильности работы в широком диапазоне скоростей газа, улучшения распределения жидкое и уменьшения уноса брызг предложены аппараты с подвижной шаровой насадкой конической формы. Разработано два типа аппаратов: форсуночный и эжекционный

В эжекционном скруббере орошение шаров осуществляет жидкостью, которая всасывается из сосуда с постоянным уровнем газами, подлежащими очистке.

Тарельчатые газопромыватели (барботажные, пенные). Наиболее распространены пенные аппараты с провальными тарелками или тарелками с переливом. Тарелки с переливом имеют отверстия диаметром 3–8 мм. Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости.

Эффективность процесса пылеулавливания зависит от величины межфазной поверхности.

Пенный аппарат со стабилизатором пенного слоя . На провальной решетке устанавливается стабилизатор, представляющий собой сотовую решетку из вертикально расположенных пластин, разделяющих сечение аппарата и пенный слой на небольшие ячейки. Благодаря стабилизатору происходит значительное накопление жидкости на тарелке, увеличение высоты пены по сравнению с провальной тарелкой без стабилизатора. Применение стабилизатора позволяет существенно сократить расход воды на орошение аппарата.

Газопромыватели ударно-инерционного действия . В этих аппаратах контакт газов с жидкостью осуществляется за счет удара газового потока о поверхность жидкости с последующим пропусканием газожидкостной взвеси через отверстия различной конфигурации или непосредственным отводом газожидкостной взвеси в сепаратор жидкой фазы. В результате такого взаимодействия образуются капли диаметром 300–400 мкм.

Рис. 7 Скрубберы: а – полый форсуночный: б – насадочный с поперечным орошением: 1 – корпус; 2– форсунки; 7 – корпус; 2– форсунка; 3 –оросительное устройство; 4– опорная решетка; 5 – насадка; 6 – шламосборник


Рис. 8. Газопромыватели с подвижной насадкой: а – с цилиндрическим слоем: 1 – опорная решетка; 2– шаровая насадка; 3– ограничительная решетка; 4 – оросительное устройство; 5 – брызгоуловитель; б и в - с коническим слоем форсуночный и эжекционный: 1 – корпус; 2– опорная решетка; 3– слой шаров; 4– брызгоуловитель; 5 – ограничительная решетка; 6 – форсунка; 7 – емкость с постоянным уровнем жидкости

Г азопромыватели центробежного действия . Наиболее распространены центробежные скрубберы, которые по конструктивному признаку можно разделить на два вида: 1) аппараты, в которых закрутка газового потока осуществляется при помощи центрального лопастного закручивающего устройства; 2) аппараты с боковым тангенциальным или улиточным подводом газа.

Скоростные газопромыватели (скрубберы Вентури). Основной частью аппаратов является труба-распылитель, в которой обеспечивается интенсивное дробление орошаемой жидкости газовым потоком, движущимся со скоростью 40–150 м/с. Имеется также каплеуловитель.

Электрофильтры. Очистка газа от пыли в электрофильтрах происходит под действием электрических сил. В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под воздействием электрического поля они перемещаются и осаждаются к осадительным электродам.

Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса – с циркуляцией и без циркуляции газа; 4) по использованию абсорбента – с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические); 5) по использованию улавливаемых компонентов – с рекуперацией и без рекуперации; 6) по типу рекуперируемого продукта; 7) по организации процесса – периодические и непрерывные; 8) па конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком – невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции. Термические методы применяют для обезвреживания газов от легко окисляемых токсических примесей.



Top