Классификация песчаных и глинистых грунтов. Глинистые грунты Относительная деформация просадочности e sl, д. е

Влажность грунтов определяют высушива­нием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсо­лютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой - степень влажности S r рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в неболь, ших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов.

Характеристики пластичности пылевато-глинистых грунтов - это влажности на грани­цах текучести Wl и раскатывания ш Р, опреде­ляемые в лабораторных условиях, а также число пластичности /р и показатель текучести II, вычисляемые по формулам (см. табл. 1.3). Характеристики w L , w P и Ip являются косвен­ными показателями состава (гранулометриче­ского и минералогического) пылевато-глинис­тых грунтов. Высокие значения этих характе­ристик свойственны грунтам с большим содер­жанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит.

1.3. КЛАССИФИКАЦИЯ ГРУНТОВ

Грунты оснований зданий и сооружений подразделяются на два класса : скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей).

В классе скальных грунтов выделяют маг­матические, метаморфические и осадочные по­роды, которые подразделяются по прочности, размягчаемости и растворимости в соответст­вии с табл. 1.4. К скальным грунтам, прочность которых в водонасыщенном состоянии менее 5 МПа (полускальные), относятся глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. При водонасыщении прочность этих грунтов может снижаться в 2-3 раза. Кроме того, в классе скальных грунтов выделяются также искусст­венные- закрепленные в естественном залега­нии трещиноватые скальные,и нескальные грунты. Эти грунты подразделяются по спо­собу закрепления (цементация, силикатизация,




битумизация, смолизация, обжиг и др.) и по нределу прочности на одноосное сжатие после закрепления так же, как и скальные грунты (см. табл. 1.4).

Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинис­тые, биогенные и почвы.

■ К крупнообломочным относятся несцемен­тированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песча­ные - это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свой­ством пластичности (число пластичности /р<


Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40,% и пылевато-глинистого более 30 % опре­деляются свойствами заполнителя в могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойст­ва крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают сле­дующие его характеристики - влажность, плотность, коэффициент пористости, а пылева­то-глинистого заполнителя - дополнительно число пластичности и консистенцию.

Основным показателем песчаных грунтов, определяющим их прочностные и деформаци­онные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е, удельному со­противлению грунта при статическом зонди­ровании q c и условному сопротивлению грун­та при динамическом зондировании q& (табл. 1.7).

При относительном содержании органи­ческого вещества 0,03

0,5 % ■- при содержании песчаного запол­нителя 40 % и более;

Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0,5 % и более.

Пылевато-глинистые грунты подразделяют во числу пластичности h (табл. 1.8) и по кон-





систенции, характеризуемой показателем теку­чести 1 L (табл. 1.9). Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты - это макропористые грунты, содержащие карбонаты кальция и спо­собные при замачивании водой давать под на­грузкой просадку, легко размокать и размы­ваться. Ил - водонасыщенный современный осадок водоемов, образовавшийся в результа­те протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористо­сти, значения которого приведены в табл. 1.10.


Пылевато-глинистые грунты (супеси, су­глинки и глины) называют грунтами с приме­сью органических веществ при относительном содержании этих веществ 0,05

Среди пылевато-глинистых грунтов необ­ходимо выделять грунты, проявляющие специ­фические неблагоприятные свойства при зама­чивании: просадочные и набухающие. К про-садочным относятся грунты, которые под дей­ствием внешней нагрузки или собственного ве­са при замачивании водой дают осадку (про­садку), и при этом относительная просадоч-ность Ss/>0,01. К набухающим относятся грун­ты, которые при замачивании водой или хими­ческими растворами увеличиваются в объеме, и при этом относительное набухание без на­грузки e S ! »>0,04.

В особую группу в нескальных грунтах вы­деляют грунты, характеризуемые значитель­ным содержанием органического вещества: биогенные (озерные, болотные, аллювиально-болотные). В состав этих грунтов входят за-торфованные грунты, торфы и сапропели. К за-торфованным относятся песчаные и пылевато-глинистые грунты, содержащие в своем соста­ве 10-50 % (по массе) органических веществ. При содержании органических веществ 5Q % и





более грунт называется торфом. Сапропели (табл. 1.11)-пресноводные илы,-содержащие более 10 % органических веществ и имеющие коэффициент пористости, как правило, более 3, а показатель текучести более 1.

Почвы - это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием. Подразделяют почвы по гранулометрическому составу так же, как крупнообломочные и песчаные грунты, а по числу пластичности, как пылевато-глинистые грунты.

К нескальным искусственным грунтам от­носятся грунты, уплотненные в природном за­легании различными методами (трамбованием, укаткой, виброуплотнением, взрывами, осуше­нием и др.), насыпные и намывные. Эти грун­ты подразделяются в зависимости от состава и характеристик состояния так же, как и при­родные нескальные грунты.


Скальные и нескальные грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грун­там, а если они находятся в мерзлом состой-нии от 3 лет и более, то к вечномерзлым.

1.4. ДЕФОРМИРУЕМОСТЬ ГРУНТОВ ПРИ СЖАТИИ

Характеристикой деформируемости грун­тов при сжатии является модуль деформаций, который определяют в полевых и лаборатор­ных условиях. Для предварительных расчетов, а также и окончательных расчетов оснований зданий и сооружений II и III класса допуска­ется принимать модуль деформации по табл. 1.12 и 1.13.



Модуль деформации определяют испыта­нием грунта статической нагрузкой, передавае­мой на штамп . Испытания проводят в шур­фах жестким круглым штампом площадью


5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах - в скважинах штампом площадью 600 см 2 . Для определения модуля деформации используют график зависимости осадки от давления (рис. 1.1), на котором вы­деляют линейный участок, проводят через него осредняющую прямую и вычисляют модуль де­формации Е в соответствии с теорией линей­но-деформируемой среды по формуле

При испытании грунтов необходимо, что­бы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра (рис. 1.2) . В результате ис­пытаний получают график зависимости прира­щения радиуса скважины от давления на ее стенки (рис. 1.3). Модуль деформации опреде­ляют на участке линейной зависимости дефор­мации от давления между точкой р\, соответ­ствующей обжатию неровностей стенок сква­жины, и точкой р2, после которой начинается интенсивное развитие пластических деформа­ций в грунте. Модуль деформации вычисляют

ПО ftlOnMVJlft

Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испы­таний того же грунта штампом. Для сооруже­ний II в III класса допускается принимать в зависимости от глубины испытания h следую­щие значения коэффициентов к в формуле (1.2): при ft<5 м 6 = 3; при 5мk = 2; при 10 м

Для песчаных и пылевато-глинистых грун­тов допускается определять модуль деформа­ции" на основе результатов статического и ди­намического зондирования грунтов. В качест­ве показателей зондирования принимают: при статическом зондировании - сопротивление грунта погружению конуса зонда q c , а при ди­намическом зондировании - условное динами, ческое сопротивление грунта погружению кону­са qa, Для суглинков и глин E-7q c и Я-6#<*; для песчаных грунтов E-3q c , а значения £ по данным динамического зондирования приведе­ны в табл. 1.14. Для сооружений I и II класса




является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами. Для сооружений III класса допускается определять Е только по результатам зондирования.

1.4.2. Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в кото­рых образец грунта сжимается без возможно­сти бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Др = Р2-Pi графика испытаний (рис. 1.4) по формуле

Давление pi соответствует природному, а р2 - предполагаемому давлению под подош­вой фундамента.

Значения модулей деформации по компрес­сионным испытаниям получаются для всех грунтов (за исключением сильносжимаемых) заниженными, поэтому они могут использовать­ся для сравнительной оценки сжимаемости


грунтов площадки или для оценки неоднород­ности по сжимаемости. При расчетах осадки эти данные следует корректировать на основе сопоставительных испытаний того же грунта в полевых условиях штампом. Для четвертичных супесей, суглинков и глин можно принимать корректирующие коэффициенты т (табл. 1.16), при этом значения Еовц необходимо определять в интервале давлений 0,1-0,2 МПа.

1.5. ПРОЧНОСТЬ ГРУНТОВ

Сопротивление грунта срезу характеризу­ется касательными напряжениями в предель­ном состоянии, когда наступает разрушение грунта . Соотношение между предельными касательными т и нормальными к площадкам сдвига а напряжениями выражается условием прочности Кулона-Мора


1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов приме­няют метод среза грунта по фиксированной


плоскости в приборах одноплоскостного сре­за. Для получения <р и с необходимо провести срез не менее трех образцов грунта при раз­личных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивле­ния срезу т строят график линейной зависимо­сти T = f(a) и находят угол внутреннего тре­ния ф и удельное сцепление с (рис. 1.5). Раз-

личают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидиро-ванно-дренированное испытание) и быстрый срез без предварительного уплотнения (некой-солидированно-недренированное испытание).


Глав-а 2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ


ОБЩИЕ СВЕДЕНИЯ

Инженерно-геологические изыскания ■- со­ставная часть комплекса работ, выполняемых для обеспечения строительного проектирова­ния исходными данными о природных услови­ях района (участка) строительства, а также прогнозирования изменений окружающей при­родной среды, которые могут произойти при строительстве и эксплуатации сооружений. При проведении инженерно-геологических изысканий изучаются грунты как основания зданий и сооружений, подземные воды, физи­ко-геологические процессы и явления (карст, оползни, сели и др.)- Инженерно-геологиче­ским изысканиям сопутствуют инженерно-гео­дезические изыскания, объектом изучения ко­торых являются топографические условия района строительства, и инженерно-гидроме­теорологические изыскания, при выполнении которых изучаются поверхностные воды и климат.

Проведение изысканий регламентируется нормативными документами и стандартами. Общие требования к проведению изысканий приведены в СНиП П-9-78 , а требования к изысканиям для отдельных видов строительст­ва-в инструкциях СН 225-79 и СН 211-62 . Учитывая специфику проектирования свайных фундаментов, основные требования к изысканиям для них приведены в СНиП 11-17-77 и в «Руководстве по проектированию свай­ных фундаментов» . Определение основных строительных свойств грунтов регламентирова­но стандартами, указанными в п. 2.4.

Инженерно-геологические изыскания долж­ны производиться, как правило, территориаль­ными изыскательскими, а также специализиро­ванными изыскательскими и проектно-изыска-тельскими организациями. Допускается их вы­полнение проектными организациями, которым в установленном порядке предоставлено такое право.

2.2. ТРЕБОВАНИЯ К ТЕХНИЧЕСКОМУ ЗАДАНИЮ И ПРОГРАММЕ ИЗЫСКАНИЙ

Планирование и выполнение изысканий осуществляются на основе технического за­дания на производство изысканий, составляе­мого проектной организацией - заказчиком. При составлении технического задания необ­ходимо определить, какие материалы, характе­ризующие природные условия строительства,


потребуются для разработки проекта, и на этой основе получить разрешение у соответ­ствующих органов на производство изысканий для данного объекта. Орган, выдающий разре­шение, может указать на необходимость ис­пользования (в целях исключения дублирова­ния) имеющихся в его распоряжении материа­лов ранее выполненных работ на территории размещения проектируемого объекта, что должно быть отражено в техническом задании. Если по проектируемому объекту имеются ма­териалы ранее выполненных изысканий, то они передаются изыскательской организации как приложение к выдаваемому техническому за­данию. Передаче подлежат и другие материа­лы, характеризующие природные условия райо­на проектируемого строительства и находя­щиеся в распоряжении проектной организации.

Техническое задание составляется по при­водимой ниже форме с текстовыми и графиче­скими приложениями.

В п. 7 задания необходимо приводить сле­дующие технические характеристики: класс от­ветственности, высота, число этажей, размеры в плане и конструктивные особенности проек­тируемого сооружения; значения предельных деформаций оснований сооружений; наличие и глубина подвалов; намечаемые типы, размеры и глубина заложения фундаментов; характер и значения нагрузок на фундаменты; особенно­сти технологических процессов (для промыш­ленного строительства); плотность застройки (для городского и поселкового строительства). Эти характеристики во многих случаях целесо­образно давать в приложении к техническому заданию в табличной форме. К техническому заданию в обязательном порядке должны быть приложены: ситуационные планы с указанием размещения (вариантов размещения) участков (площадок) строительства и трасс инженер­ных коммуникаций; топографические планы в масштабе 1: 10 000- 1: 5000 с указанием контуров размещения проектируемых зданий и сооружений и трасс инженерных коммуника­ций, а также планировочных отметок; копии протоколов согласований прохождений и под­ключений (примыканий) инженерных комму­никаций, влияющих на состав и объем инже­нерных изысканий, с графическими приложе­ниями; материалы исполнительных съемок или проектная документация подземных ком­муникаций (при производстве изысканий на площадках действующих промышленных пред­приятий и внутри городских кварталов).

Техническое задание является основой для составления изыскательской организаци-


Ей программы изысканий, в которой обосно­вываются этапы, состав, объемы, методы и последовательность выполнения работ и на ос­новании которой составляется сметно-договор-ная документация. Составлению программы предшествуют сбор, анализ и обобщение ма­териалов о природных условиях района изыс­каний, а в необходимых случаях (отсутствие или противоречивость материалов) - полевое обследование района изысканий.

Программа включает текстовую часть и приложения. Текстовая часть должна состоять из следующих разделов: 1) общие сведения; 2) характеристика района изысканий; 3) изу­ченность района изысканий; 4) состав, объе­мы и методика изысканий; 5) организация ра­бот; 6) перечень представляемых материалов; 7) список литературы.

В разделе 1 приводятся данные первых пяти пунктов технического задания. В разде­ле 2 дается краткая физико-географическая характеристика района изысканий и местных природных условий с отражением особенно­стей рельефа и климата, сведений о геологи­ческом строении, гидрогеологических условиях, неблагоприятных физико-геологических процес­сах и явлениях, о составе, состоянии и свойст­вах грунтов. В разделе 3 излагаются сведения об имеющихся фондовых материалах ранее выполненных изыскательских, поисковых и ис­следовательских работ и дается оценка полно­ты, достоверности и степени пригодности этих материалов. В разделе 4 на основе требова­ний технического задания, характеристики района (участка) изысканий и его изученности определяются оптимальные состав и объемы работ, а также обосновывается выбор мето­дов проведения инженерно-геологических ис­следований. При согласовании программы это­му разделу проектировщики должны уделять особое внимание, руководствуясь сведениями о составе и объеме работ, приводимыми далее в пп. 2.3 и 2.4. В разделе 5 устанавливаются


последовательность и планируемая продолжи­тельность работ, определяются необходимые ресурсы и организационные мероприятия, а также мероприятия по охране окружающей среды. В разделе 6 указываются организации, которым должны быть направлены материа­лы, а также наименование материалов. В раз­деле 7 дается перечень общесоюзных норма­тивных документов и государственных стан­дартов, отраслевых и ведомственных инструк­ций (указаний), руководств и рекомендаций, литературных источников, отчетов об изыска­ниях, которыми следует пользоваться при про­изводстве изысканий.

К программе изысканий должны быть приложены: копия технического задания за­казчика; материалы, характеризующие состав, объемы и качество ранее выполненных изыс­каний; план или схема объекта с указанием границ изысканий; проект размещения пунктов горных выработок, полевых исследований и т. п., выполненный на топографической осно­ве; технологическая карта последовательности производства работ; чертежи (эскизы) выра­боток и нестандартного оборудования.

Песок I P < 1

Супесь 1≤ I P < 7

Суглинок 7 ≤ I P < 17

Глина I P ≥ 17

Определяем тип исследуемого грунта.

Е. Показателем текучести глинистого грунта I L называют числовую характеристику, показывающую в каком состоянии находится грунт в условиях естественного залегания.

Ранее определены:

Природная влажность грунта W tot [%]

Влажность на границе текучести W L [%]

Влажность на границе раскатывания W P [%]

I L = (W - W P) /(W L – W P)

Состояние пылевато-глинистого грунта по консистенции определяется следующим образом:

Супеси твердые I L ≤ 0

– пластичные 0 < I L < 1

– текучие I L ≥ 1

Суглинки и глины твердые I L ≤ 0

– полутвердые 0 < I L ≤ 0,25

– тугопластичные 0,25 < I L ≤ 0,5 – мягкопластичные 0,5 < I L ≤ 0,75

– текучие 0,75 < I L

Определяем состояние исследуемого грунта.

З. Назначение расчетного сопротивления грунта R o .

Ранее определены:

Тип грунта по пластичности I P [дол.ед.]

Коэффициент пористости e [дол.ед.]

Показатель консистенции I L [дол.ед.]

Для пылевато-глинистых грунтов расчетное сопротивление грунта определяется по таблице.

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ УГЛА ЕСТЕСТВЕННОГО ОТКОСА

ПЕСЧАНОГО ГРУНТА

Углом естественного откоса α называют максимальный угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие.

Угол естественного откоса песчаного грунта определяется в воздушно-сухом и подводном состояниях. Величина угла естественного откоса используется в расчетах объемов земляных работ, а самое главное, в расчетах прочности и устойчивости грунтов, давления их на ограждения и пр. Кроме того, угол естественного откоса может служить признаком наличия у песчаных грунтов, содержащих свободные коллоиды, плывунных свойств (угол естественного откоса в подводном состоянии у таких грунтов колеблется от 0 о до 12-14 о).

Принадлежности:

1. Прибор для определения углов естественного откоса (рис.) дисковый прибор

2. Прибор Д.И.Знаменского УВТ-3М

3. Масштабная линейка.

4. Уровень.

Порядок выполнения работы:

Образец воздушно-сухого песка объемом, примерно, 1 кг. Просеивают сквозь сито с диаметром отверстий 5 мм. И тщательно перемешивают. Кроме прибора Д.И. Знаменского, определения угла естественного откоса можно выполнить с помощью диска, имеющего вертикальный тарированный стержень. На такой диск сверху одевается приспособление сверху отверстием, засыпается песком, а затем очень плавно снимаем это приспособление. Излишек песка осыпается, а в диске остается конус из песка. Вершина которого в месте соприкосновения со стрежнем показывает значение угла откоса.

Измеряют высоту h и основание l откоса с точностью до 1 мм. Угол естественного откоса вычисляют (с точностью до 30 мин.) по формуле:


tg α = ; α = arc tg

Для каждого образа песчаного грунта в воздушно-сухом состоянии производят не менее трех определений угла естественного откоса. Расхождение между повторными определениями больше чем на 2˚ не допускается. За угол естественного откоса песчаного грунта в воздушно-сухом состоянии принимают среднее арифметического значение результатов отдельных определений, выраженное в целых градусах.

Последовательность записи результатов определения:

1. Наименование вида песчаного грунта

2. Определение угла естественного откоса

Приложение 1 лаб.работе №1

Твердость минералов

Классификация магматических горных пород по SiO 2

Состав пород

Породы

содержание диоксида SiO 2 (%) минералы глубинные излившиеся (аналоги глубинных)
Кислые породы (75-65) Кварц, полевые шпаты (чаще ортоклаз), слюды Граниты Кварцевый порфир, липарит

Средние породы (65-52)

Полевые шпаты (чаще ортоклаз, роговая обманка, биотит) Сиениты Ортоклазовый порфир, трахит
Плагиоклазы, роговая обманка, биотит Диориты Порфирит, андезит
Основные породы (52-40) Плагиоклазы (чаще лабрадор), авгит, иногда оливин Габбро Диабаз, базальт

Ультраосновные породы (менее 40)

Авгит Пироксениты -
Авгит, оливин, рудные минералы Перидотиты -
Оливин, рудные минералы Дуниты -

Приложение 2 лаб.работе №1

5. Песчаные грунты состоят из частиц зерен кварца и других минералов крупностью от 0,1 до 2 мм, содержащие глины не более 3% и не обладают свойством пластичности. Пески разделяют по зерновому составу и размеру преобладающих фракций на гравелистые лески d>2 мм, крупные d>0,5 мм, средней крупности d>0,25 мм,мелкие d>0,1 мм и пылеватые d=0,05 - 0,005 мм.

Частицы грунта крупностью от d=0,05 - 0,005 мм называют пылеватыми . Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых . Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым .

Чем крупнее и чище пески, тем большую нагрузку может выдержать слой основания из него. Сжимаемость плотного песка невелика, но скорость уплотнения под нагрузкой значительна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластичности.

Гравелистые , крупные и средней крупности пески значительно уплотняются под нагрузкой, незначительно промерзают.

Тип крупнообломочных и песчаных грунтов устанавливается по гранулометрическому составу, разновидность – по степени влажности.

Глинистые – связные грунты, состоящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйчатую форму, с небольшой примесью мелких песчаных частиц. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры глинистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение.

Глинистые грунты делятся в зависимости от числа пластичности на глины (с содержанием глинистых частиц более 30%), суглинки (10...30%) и супеси (З...10%).

Несущая способность глинистых оснований зависит от влажности, которая определяет консистенцию глинистых грунтов. Сухая глина может выдерживать довольно большую нагрузку.

Тип глинистого грунта зависит от числа пластичности, разновидность – от показателя текучести.

Классификация грунтов по величине частиц.

6. По крупности минеральных частиц грунта, их взаимной связи и механической прочности грунты делят на пять классов: скальные, полускальные, крупнообломочные, песчаные (несвязные) и глинистые (связные).

К скальным грунтам относятся сцементированные водоустойчивые и практически несжимаемые породы (граниты, песчаники, известняки и т. п.), залегающие обычно в виде сплошных или трещиноватых массивов.

К полускальным грунтам относятся сцементированные породы, способные к уплотнению (мергели, алевролиты, аргиллиты и т. п.) и неводостойкие (гипс, гипсоносные конгломераты).

Крупнообломочные грунты состоят из несцементированных кусков скальных и полускальных пород; обычно содержат более 50 % обломков пород размером свыше 2 мм.


Песчаные грунты состоят из несцементированных частиц пород размером 0,05...2 мм; представляют собой, как правило, естественно разрушившиеся и преобразованные в различно степени скальные грунты; не обладают пластичностью.

Глинистые грунты также являются продуктом естественного разрушения и преобразования первичных горных пород, составляющих скальные грунты, но с преобладающим размером частиц менее 0,005 мм.

Классификация песчаных грунтов по степени влажности.

7. КРУПНООБЛОМОЧНЫе И ПЕСЧАНЫе ГРУНТЫ ПО СТЕПЕНИ ВЛАЖНОСТИ ПОДРАЗДЕЛЯЮТСЯ.

Влажность грунтов определяют высушива­нием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсо­лютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой - степень влажности S r рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в неболь, ших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов.

Характеристики пластичности пылевато-глинистых грунтов - это влажности на грани­цах текучести Wl и раскатывания ш Р, опреде­ляемые в лабораторных условиях, а также число пластичности /р и показатель текучести II, вычисляемые по формулам (см. табл. 1.3). Характеристики w L , w P и Ip являются косвен­ными показателями состава (гранулометриче­ского и минералогического) пылевато-глинис­тых грунтов. Высокие значения этих характе­ристик свойственны грунтам с большим содер­жанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит.

1.3. КЛАССИФИКАЦИЯ ГРУНТОВ

Грунты оснований зданий и сооружений подразделяются на два класса : скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей).

В классе скальных грунтов выделяют маг­матические, метаморфические и осадочные по­роды, которые подразделяются по прочности, размягчаемости и растворимости в соответст­вии с табл. 1.4. К скальным грунтам, прочность которых в водонасыщенном состоянии менее 5 МПа (полускальные), относятся глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. При водонасыщении прочность этих грунтов может снижаться в 2-3 раза. Кроме того, в классе скальных грунтов выделяются также искусст­венные- закрепленные в естественном залега­нии трещиноватые скальные,и нескальные грунты. Эти грунты подразделяются по спо­собу закрепления (цементация, силикатизация,




битумизация, смолизация, обжиг и др.) и по нределу прочности на одноосное сжатие после закрепления так же, как и скальные грунты (см. табл. 1.4).

Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинис­тые, биогенные и почвы.

■ К крупнообломочным относятся несцемен­тированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песча­ные - это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свой­ством пластичности (число пластичности /р<


Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40,% и пылевато-глинистого более 30 % опре­деляются свойствами заполнителя в могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойст­ва крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают сле­дующие его характеристики - влажность, плотность, коэффициент пористости, а пылева­то-глинистого заполнителя - дополнительно число пластичности и консистенцию.



Основным показателем песчаных грунтов, определяющим их прочностные и деформаци­онные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е, удельному со­противлению грунта при статическом зонди­ровании q c и условному сопротивлению грун­та при динамическом зондировании q& (табл. 1.7).

При относительном содержании органи­ческого вещества 0,03

0,5 % ■- при содержании песчаного запол­нителя 40 % и более;

Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0,5 % и более.

Пылевато-глинистые грунты подразделяют во числу пластичности h (табл. 1.8) и по кон-





систенции, характеризуемой показателем теку­чести 1 L (табл. 1.9). Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты - это макропористые грунты, содержащие карбонаты кальция и спо­собные при замачивании водой давать под на­грузкой просадку, легко размокать и размы­ваться. Ил - водонасыщенный современный осадок водоемов, образовавшийся в результа­те протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористо­сти, значения которого приведены в табл. 1.10.


Пылевато-глинистые грунты (супеси, су­глинки и глины) называют грунтами с приме­сью органических веществ при относительном содержании этих веществ 0,05

Среди пылевато-глинистых грунтов необ­ходимо выделять грунты, проявляющие специ­фические неблагоприятные свойства при зама­чивании: просадочные и набухающие. К про-садочным относятся грунты, которые под дей­ствием внешней нагрузки или собственного ве­са при замачивании водой дают осадку (про­садку), и при этом относительная просадоч-ность Ss/>0,01. К набухающим относятся грун­ты, которые при замачивании водой или хими­ческими растворами увеличиваются в объеме, и при этом относительное набухание без на­грузки e S ! »>0,04.

В особую группу в нескальных грунтах вы­деляют грунты, характеризуемые значитель­ным содержанием органического вещества: биогенные (озерные, болотные, аллювиально-болотные). В состав этих грунтов входят за-торфованные грунты, торфы и сапропели. К за-торфованным относятся песчаные и пылевато-глинистые грунты, содержащие в своем соста­ве 10-50 % (по массе) органических веществ. При содержании органических веществ 5Q % и




более грунт называется торфом. Сапропели (табл. 1.11)-пресноводные илы,-содержащие более 10 % органических веществ и имеющие коэффициент пористости, как правило, более 3, а показатель текучести более 1.

Почвы - это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием. Подразделяют почвы по гранулометрическому составу так же, как крупнообломочные и песчаные грунты, а по числу пластичности, как пылевато-глинистые грунты.

К нескальным искусственным грунтам от­носятся грунты, уплотненные в природном за­легании различными методами (трамбованием, укаткой, виброуплотнением, взрывами, осуше­нием и др.), насыпные и намывные. Эти грун­ты подразделяются в зависимости от состава и характеристик состояния так же, как и при­родные нескальные грунты.


Скальные и нескальные грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грун­там, а если они находятся в мерзлом состой-нии от 3 лет и более, то к вечномерзлым.

1.4. ДЕФОРМИРУЕМОСТЬ ГРУНТОВ ПРИ СЖАТИИ

Характеристикой деформируемости грун­тов при сжатии является модуль деформаций, который определяют в полевых и лаборатор­ных условиях. Для предварительных расчетов, а также и окончательных расчетов оснований зданий и сооружений II и III класса допуска­ется принимать модуль деформации по табл. 1.12 и 1.13.



Модуль деформации определяют испыта­нием грунта статической нагрузкой, передавае­мой на штамп . Испытания проводят в шур­фах жестким круглым штампом площадью


5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах - в скважинах штампом площадью 600 см 2 . Для определения модуля деформации используют график зависимости осадки от давления (рис. 1.1), на котором вы­деляют линейный участок, проводят через него осредняющую прямую и вычисляют модуль де­формации Е в соответствии с теорией линей­но-деформируемой среды по формуле

При испытании грунтов необходимо, что­бы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра (рис. 1.2) . В результате ис­пытаний получают график зависимости прира­щения радиуса скважины от давления на ее стенки (рис. 1.3). Модуль деформации опреде­ляют на участке линейной зависимости дефор­мации от давления между точкой р\, соответ­ствующей обжатию неровностей стенок сква­жины, и точкой р2, после которой начинается интенсивное развитие пластических деформа­ций в грунте. Модуль деформации вычисляют

ПО ftlOnMVJlft

Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испы­таний того же грунта штампом. Для сооруже­ний II в III класса допускается принимать в зависимости от глубины испытания h следую­щие значения коэффициентов к в формуле (1.2): при ft<5 м 6 = 3; при 5мk = 2; при 10 м

Для песчаных и пылевато-глинистых грун­тов допускается определять модуль деформа­ции" на основе результатов статического и ди­намического зондирования грунтов. В качест­ве показателей зондирования принимают: при статическом зондировании - сопротивление грунта погружению конуса зонда q c , а при ди­намическом зондировании - условное динами, ческое сопротивление грунта погружению кону­са qa, Для суглинков и глин E-7q c и Я-6#<*; для песчаных грунтов E-3q c , а значения £ по данным динамического зондирования приведе­ны в табл. 1.14. Для сооружений I и II класса



является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами. Для сооружений III класса допускается определять Е только по результатам зондирования.

1.4.2. Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в кото­рых образец грунта сжимается без возможно­сти бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Др = Р2-Pi графика испытаний (рис. 1.4) по формуле

Давление pi соответствует природному, а р2 - предполагаемому давлению под подош­вой фундамента.

Значения модулей деформации по компрес­сионным испытаниям получаются для всех грунтов (за исключением сильносжимаемых) заниженными, поэтому они могут использовать­ся для сравнительной оценки сжимаемости


грунтов площадки или для оценки неоднород­ности по сжимаемости. При расчетах осадки эти данные следует корректировать на основе сопоставительных испытаний того же грунта в полевых условиях штампом. Для четвертичных супесей, суглинков и глин можно принимать корректирующие коэффициенты т (табл. 1.16), при этом значения Еовц необходимо определять в интервале давлений 0,1-0,2 МПа.

1.5. ПРОЧНОСТЬ ГРУНТОВ

Сопротивление грунта срезу характеризу­ется касательными напряжениями в предель­ном состоянии, когда наступает разрушение грунта . Соотношение между предельными касательными т и нормальными к площадкам сдвига а напряжениями выражается условием прочности Кулона-Мора

1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов приме­няют метод среза грунта по фиксированной


плоскости в приборах одноплоскостного сре­за. Для получения <р и с необходимо провести срез не менее трех образцов грунта при раз­личных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивле­ния срезу т строят график линейной зависимо­сти T = f(a) и находят угол внутреннего тре­ния ф и удельное сцепление с (рис. 1.5). Раз-

личают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидиро-ванно-дренированное испытание) и быстрый срез без предварительного уплотнения (некой-солидированно-недренированное испытание).

Глав-а 2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ

Влажность грунтов определяют высушиванием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсолютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой - степень влажности S r рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в небольших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов.

Характеристики пластичности пылевато-глинистых грунтов - это влажности на границах текучести w L и раскатывания w p , определяемые в лабораторных условиях, а также число пластичности I p и показатель текучести I L вычисляемые по формулам (см. табл. 1.3). Характеристики w L , w p и I р являются косвенными показателями состава (гранулометрического и минералогического) пылевато-глинистых грунтов. Высокие значения этих характеристик свойственны грунтам с большим содержанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит.

1.3. КЛАССИФИКАЦИЯ ГРУНТОВ

Грунты оснований зданий и сооружений подразделяются на два класса : скальные (грунты с жесткими связями) и нескальные (грунты без жестких связей).

Нескальные грунты подразделяют на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы.

К крупнообломочным относятся несцементированные грунты, в которых масса обломков крупнее 2 мм составляет 50 % и более. Песчаные - это грунты, содержащие менее 50 % частиц крупнее 2 мм и не обладающие свойством пластичности (число пластичности I р < 1 %).ТАБЛИЦА 1.5. КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ

Крупнообломочные и песчаные грунты классифицируются по гранулометрическому составу (табл. 1.5) и по степени влажности (табл. 1.6).

ТАБЛИЦА 1.6. ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r

Свойства крупнообломочного грунта при содержании песчаного заполнителя более 40 % и пылевато-глинистого более 30 % определяются свойствами заполнителя и могут устанавливаться по испытанию заполнителя. При меньшем содержании заполнителя свойства крупнообломочного грунта устанавливают испытанием грунта в целом. При определении свойств песчаного заполнителя учитывают следующие его характеристики - влажность, плотность, коэффициент пористости, а пылевато-глинистого заполнителя - дополнительно число пластичности и консистенцию.

Основным показателем песчаных грунтов, определяющим их прочностные и деформационные свойства, является плотность сложения. По плотности сложения пески подразделяются по коэффициенту пористости е , удельному сопротивлению грунта при статическом зондировании q с и условному сопротивлению грунта при динамическом зондировании q d (табл. 1.7).

При относительном содержании органического вещества 0,03 < I от ≤ 0,1 песчаные грунты называют грунтами с примесью органических веществ. По степени засоленности крупнообломочные и песчаные грунты подразделяют на незасоленные и засоленные. Крупнообломочные грунты относятся к засоленным, если суммарное содержание легко- и среднерастворимых солей (% от массы абсолютно сухого грунта) равно или более:

− 2 % - при содержании песчаного заполнителя менее 40 % или пылевато-глинистого заполнителя менее 30 %

− 0,5 % - при содержании песчаного заполнителя 40 % и более;

− 5 % - при содержании пылевато-глинистого заполнителя 30 % и более.

Песчаные грунты относятся к засоленным, если суммарное содержание указанных солей составляет 0,5 % и более.

Пылевато-глинистые грунты подразделяют по числу пластичности I p (табл. 1.8) и по консистенции, характеризуемой показателем текучести I L (табл. 1.9).ТАБЛИЦА 1.7. ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый: маловлажный и влажный водонасыщенный q c > 10 q c > 7 10 ≥ q c ≥ 3 7 ≥ q c ≥ 2 q c < 3 q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий: маловлажный и влажный водонасыщенный q d > 11 q d > 8,5 11 ≥ q d ≥ 3 8,5 ≥ q d ≥ 2 q d < 3 q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ТАБЛИЦА 1.8. ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ

Среди пылевато-глинистых грунтов необходимо выделять лёссовые грунты и илы. Лёссовые грунты - это макропористые грунты, содержащие карбонаты кальция и способные при замачивании водой давать под нагрузкой просадку, легко размокать и размываться. Ил - водонасыщенный современный осадок водоемов, образовавшийся в результате протекания микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористости, значения которого приведены в табл. 1.10.

ТАБЛИЦА 1.9. ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ТАБЛИЦА 1.10. ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ

Пылевато-глинистые грунты (супеси, суглинки и глины) называют грунтами с примесью органических веществ при относительном содержании этих веществ 0,05 < I от ≤ 0,1. По степени засоленности супеси, суглинки и глины подразделяют на незаселенные и засоленные. К засоленным относятся грунты, в которых суммарное содержание легко- и среднерастворимых солей составляет 5 % и более.

Среди пылевато-глинистых грунтов необходимо выделять грунты, проявляющие специфические неблагоприятные свойства при замачивании: просадочные и набухающие. К просадочным относятся грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают осадку (просадку), и при этом относительнаяпросадочность ε sl ≥ 0,01. К набухающим относятся грунты, которые при замачивании водой или химическими растворами увеличиваются в объеме, и при этом относительное набухание без нагрузки ε sw ≥ 0,04.


Top