Каркасы многоэтажных зданий. Многоэтажные здания

Основная область применения стальных каркасов - многоэтажные жилые и общественные здания различно­го назначения. Если для зданий высотой до 30 этажей чаще применяют железобетонные каркасы, то для зданий с большей этажностью целесообразно применять сталь­ные каркасы. По мере увеличения высоты здания влияние горизонтальных нагрузок возрастает и решающими ста­новятся требования по обеспечению жесткости несущих конструкций.

Стальные каркасы имеют некоторые преимущества в сравнении с железобетонными, к которым относятся:

- относительно меньший вес , в связи с чем уменьшаются усилия в конструктивных элементах, снижа­ются масса и стоимость фундаментов, имеется возмож­ность членения конструкций на монтажные элементы (блоки) более крупных размеров;

- конструктивные удобства крепления огражда­ющих конструкций и инженерных коммуникаций; возмож­ность размещения в пределах габаритов колонн верти­кальных коммуникаций, а в пределах высоты перекры­тий - горизонтальных;

- малые размеры сечений колонн, что в некото­рых случаях позволяет скрыть их в стене (перегородке);

- возможность создания (без резкого увеличе­ния материалоемкости) большепролетных перекрытий, допускающих гибкость планировочных решений.

Основная проблема применения стальных каркасов - малая огнестойкость и подверженность коррозии стали - обуславливает необходимость дополнительных затрат на защиту конструкций. Применение огнезащитных покры­тий, использование спринклерных установок может не­сколько снизить эти затраты.

Конструктивные элементы каркасов .

Колонна - основной элемент каркаса здания, воспринимающий преимущественно сжимающие усилия, иногда с изгибом. Колонны оказывают решающее влияние на конструирова­ние несущей системы и на ее показатели, поэтому при выборе типа колонн нужно учитывать технологические и экономические требования.

Применяемые типы сечений сплошных и сквозных колонн показаны на рис. 12.17. Сплошные колонны могут быть прокатными или составными, когда они образуются из нескольких прокатных профилей или листов. Большин­ство сечений - сплошные составные, образуемые авто­матической сваркой.

Рис. 12.17. Типы сечений стальных колонн: а-г - сплошные из прокатных профилей; д-к - сплошные свар­ные из листов; л-п - сплошные сварные из профилей; р-т - сплошные сварные из листов и профилей; у-ш - сквозные из профилей и накладок (вставок)

Сквозные колонны (рис. 12.17 у-ш) - как менее ком­пактные и более трудоемкие - используются в современ­ных каркасах реже, преимущественно в уникальных зда­ниях небольшой этажности.

Выбор типа сечения зависит от вида и соотношения внутренних усилий (продольная сила, изгибающий мо­мент), от значения расчетных длин, удобства крепления ригелей. Если изгибающие моменты отсутствуют или малы, а расчетные длины не превышают обычной высоты этажа (3-4 м), выбирают компактные сечения с небольшой гибкостью (30-50). Толщину листов в составных сечениях принимают обычно не более 60 мм, а отношение габари­тов сечения к расчетной длине не менее 1/15, чему соот­ветствуют гибкости 40-60 (в зависимости от типа сечения).

Двутавровый профиль - самая распространенная форма сечения колонн. Она особенно удобна при необ­ходимости крепления к колоннам балок в двух направле­ниях, так как все элементы двутавра доступны для поста­новки болтов.

Прямоугольные коробчатые профили применяются для колонн при больших продольных усилиях и изгибе в обоих направлениях или при большой свободной длине колонн.

Сплошной квадратный профиль, позволяющий де­лать колонны с наименьшими габаритами сечения, обла­дает высокой степенью огнестойкости при ограниченной защите.

Крестообразные профили, благодаря полной сим­метрии и своеобразной форме поперечного сечения, часто применяются из эстетических соображений, особен­но для колонн, которые размещены на пересечении пе­регородок и должны быть скрыты в них.

Профили круглого полого сечения (трубы) выгодны с расчетной точки зрения, так как во всех направлениях они имеют одинаковые геометрические характеристики.

Сквозные сечения применяются для колонн каркасов высотных зданий, если балки должны проходить между ветвями колонн или предусматривается прокладка техни­ческого оборудования внутри колонн.

Базы колонн . База является опорной частью колон­ны и служит для распределения сосредоточенного давле­ния от стержня колонны по площади фундамента, обес­печивая закрепление нижнего конца колонны в соответ­ствии с принятой расчетной схемой.

В зависимости от типа и высоты сечения колонны применяют базы: без траверс, с общими или раздельны­ми траверсами, с одностенчатыми или двухстенчатыми траверсами (рис. 12.18).


Рис. 12.18. Схемы баз колонн: а, б - без траверс; в - одностенчатая; г - двухстенчатая с раз­дельными траверсами; д - двухстенчатая с общими траверсами

Конструктивное решение базы зависит от способа ее сопряжения с фундаментом и принятого метода монтажа колонн. С помощью базы осуществляется шарнирное или жесткое сопряжение колонн с фундаментами.

Базы колонн при шарнирном сопряжении с фунда­ментом имеют наиболее простую конструкцию (рис. 12.19 а-в). Для центрально сжатых колонн со значитель­ным усилием может быть применена база, состоящая из толстой стальной опорной плиты. Ребра жесткости и со­единительные траверсы создают более равномерную передачу силового потока от колонны к плите. Особенность всех шарнирных баз состоит в том, что анкерные болты (их обычно два) крепят базу к фундаменту непосред­ственно за опорную плиту.




Рис. 12.19. Типы баз колонн: а - при шарнирном сопряжении с фундаментом с толстой опор­ной плитой; б - с плитой и ребрами жесткости; в - с боковыми траверсами; г - при жестком сопряжении с фундаментом, с бо­ковыми траверсами; 1 - отверстия для анкерных болтов; 2 - опорная плита; 3 - траверса; 4 - ребро жесткости; 5 - прижим­ная планка; 6 - анкерный болт

Базы колонн при жестком сопряжении с фундамен­том крепятся с помощью не менее четырех анкерных бол­тов и прижимных планок (рис. 12.19 г). Жесткое сопряже­ние устраивают для внецентренно сжатых колонн, кото­рые могут передавать изгибающие моменты. С этой це­лью траверсы приходится развивать в направлении дей­ствия момента. При относительно небольших опорных моментах траверсы делают из листов толщиной 10-12 мм или швеллеров.

Толщину опорной плиты базы определяют расчетом, однако из конструктивных соображений ее не принимают менее 20 мм. Обычно базы колонн устанавливают на 0,5-1 м ниже отметки пола первого этажа и обетонируют для защиты от коррозии.

Анкерные болты . При шарнирном сопряжении ко­лонн с фундаментом анкерные болты выполняют устано­вочную функцию, фиксируя положение базы относитель­но фундамента. Размеры таких болтов назначают кон­структивно, принимая диаметр 20-30 мм. Отверстия или вырезы для болтов в опорной плите базы делают в 1,5 раза больше диаметра болтов. Глубину заделки бол­тов в бетоне принимают равной 15-20 диаметрам болта. Способы заделки анкерных болтов в фундаменте пред­ставлены на рис. 12.20.


Рис. 12.20. Тип анкерных болтов: а - с заделкой анкера с отогнутым нижним концом через сцепле­ние; б, в - с заделкой анкера с помощью шайб; г - с помощью приваренных стержней

Стыки колонн делают из-за ограниченной длины прокатной стали (заводские стыки) и для деления колон­ны на отправочные элементы длиной не более 18 м по условиям перевозки (монтажные стыки).

Заводские стыки осуществляют сварными с прямым стыковым швом с полным проваром.

Монтажные стыки колонн, по условиям унификации и удобства монтажа, размещают, как правило, на одном горизонтальном уровне выше ригеля на 0,6-1,0 м. Стыки, где не возникают растягивающие напряжения, выполня­ются болтовыми или сварными.

Балки представляют собой простейшую конструктив­ную форму, используемую как несущий элемент перекры­тий (покрытий). В каркасах балки служат ригелями рам, образуемых совместно с колоннами. Балки работают пре­имущественно на изгиб. Продольные силы в балках, как правило, незначительны и появляются от горизонтальных ветровых нагрузок, передаваемых от наружных стен че­рез колонны.

Система несущих балок в перекрытии называется балочной клеткой , которая бывает нормальной или ус­ложненной. В балочной клетке нормального типа верти­кальная нагрузка на ригели рам передается через второ­степенные балки . Ригели рам в перекрытии такого типа называются главными балками . В балочной клетке ус­ложненного типа применяют балки трех видов с соответ­ствующей передачей нагрузок: балки настила , второсте­пенные и главные.

Балки классифицируют следующим образом:

По типу сечения: прокатные, составные (рис. 12.22);

По высоте поперечного сечения: постоянной вы­соты, переменной высоты;

По виду стенки: со сплошной, с перфорирован­ной стенкой, с отверстиями;

По статическому признаку: разрезные, неразрез­ные, консольные.

Рис. 12.22. Балки стальных каркасов: а-е - формы балок из прокатных профилей; ж - сварные перфо­рированные балки; з - типы сечений балок из прокатных профи­лей; и - сечения сварных балок из листов; к - балка из швелле­ров и листов

При пролетах до 12 м балки проектируют сплошными из обычных и широкополочных двутавров, одиночных или спаренных швеллеров (рис. 12.22 з). Балочные двутавры с уклоном внутренних граней полок имеют ограниченные возможности по величине пролета. Широкополочные дву­тавры с параллельными гранями полок лишены такого недостатка, так как имеют высоту сечения до 1 м.

На предварительной стадии проектирования высоту прокатных балок для междуэтажных перекрытий назнача­ют в зависимости от величины перекрываемого пролета: главных балок - 1/10-1/15 от пролета, второстепенных балок - 1/20-1/24 от пролета.

При недостаточной несущей способности и жестко­сти прокатных балок изготавливают составные сварные балки. Простейшая составная балка состоит из трех лис­тов: вертикального (стенки) и двух горизонтальных по­ясов; более сложная замкнутого сечения - из четырех листов (рис. 12.22 и).

При больших пролетах и малых нагрузках, размеще­нии инженерных коммуникаций в пределах высоты пере­крытия целесообразны перфорированные балки из ши­рокополочных двутавров (рис. 12.22 ж). Их получают пу­тем разрезания стенки горячекатаного профиля в про­дольном направлении по ломаной линии. Затем обе ча­сти сдвигают относительно друг друга до соединения гребней впритык, после чего они свариваются. В зависи­мости от формы линии, по которой производится разрез­ка стенки, можно получать различные формы отверстий (перфораций) и различную высоту балки. Оптимальная высота составляет полуторную высоту исходной балки. Для увеличения высоты сечения перфорированной балки между гребнями вставляются прямоугольные пластины.

Сопряжение главных и второстепенных балок мо­жет быть этажным , когда вспомогательные балки распо­лагаются над главными (рис. 12.23 е, л); в одном уров­не , когда верхние пояса вспомогательных и главных ба­лок находятся в одной плоскости (рис. 12.23 з-к, н-р); пониженным , когда пояс вспомогательной балки располагается ниже пояса главной балки (рис. 12.23 ж, м). Этажное сопряжение балок отличается простотой испол­нения, но вызывает увеличение строительной высоты пе­рекрытия и, соответственно, здания.

Рис. 12.23. Сопряжения вспомогательных балок с главными. Приемы креплений: а - болтовое с помощью уголков; б - болто­вое односрезное с помощью приваренного вертикального лис­та; в - болтовое двухсрезное; г - болтовое через торцовый лист вспомогательной балки; д - сварное крепление к стенке главной балки. Шарнирные сопряжения: е - этажное опирание с фикса­цией болтами; ж - пониженное болтовое; з-к - одноуровневые болтовые. Жесткие сопряжения: л - этажное опирание неразрез­ной второстепенной балки; м - пониженное опирание с верхним накладным листом; н - одноуровневое болтовое с верхним на­кладным листом; о - то же, с верхним и нижним листами; п, р - одноуровневые сварные

В месте сопряжения двух балок поперечная сила при­крепляемой второстепенной балки должна быть переда­на на главную балку. Для балок с шарнирным опиранием наиболее распространены следующие приемы сопря­жений: болтовые с помощью уголков или приваренных вертикальных листов и сварные (рис. 12.23 а-к).

Жесткие сопряжения , передающие поперечные силы и изгибающие моменты, изображены на рис. 12.23 л-р.

При необходимости получения больших внутренних безопорных пространств (помещений) в качестве ригелей рам каркасов применяют фермы (рис. 12.24). Безраскос­ные фермы на высоту этажа изготавливают из прокатно­го профиля (двутавра) с помощью сварки. При работе под нагрузкой пояса и стойки таких ферм испытывают про­дольные усилия и изгибающие моменты, что необходимо учитывать при проектировании каркаса. Для перекрытия больших пролетов и прокладки горизонтальных коммуни­каций в пределах высоты перекрытия применяются рас­косные фермы, высоту которых принимают в пределах 1/8-1/10 пролета (рис. 12.24 г, д).

Рис. 12.24. Фермы стальных каркасов:

а - безраскосная ферма (балка Виренделя), сварная из прокат­ного двутавра; б - узлы безраскосной фермы при необходимо­сти увеличения жесткости и несущей способности; в - безрас­косная ферма под большие нагрузки (сварная из листовой и широкополосной стали); г - ферма с нисходящими раскосами; д - ферма с треугольной решеткой; е-м - типы сечений ферм; н-р - варианты узлов ферм

Компоновка элементов каркаса во многом зависит от архитектурно-планировочных требований и определя­ется формой здания. Характерные для стальных каркасов типы компоновок представлены на рис. 12.25.


Рис. 12.25. Схемы компоновки стальных каркасов:

а-г - с поперечными основными рамами; д-з - с продольными рамами; и-м - с рамами в двух направлениях; н-р - с рамами в трех направлениях (на треугольной сетке колонн); с-ц - с комбинированными расположением и пролетами рам; ч - с рамами в трех на­правлениях (для треугольного в плане здания); ш - с веерообразным расположением рам; э - с рамами по радиальным и кольцевым направлениям

В каркасных зданиях компоновка колонн определяет систему горизонтальных элементов каркаса - балок. Глав­ные балки совместно с колоннами образуют основную си­стему, выполняя функции несущих элементов вертикаль­ных рам. Пролеты главных балок могут достигать 15 м. В зависимости от размеров основной планировочной ячей­ки каркаса она может быть разделена второстепенными балками с образованием балочной клетки. Эти балки имеют пролеты 6-12 м и располагаются с шагом 2-3 м. При этом чем больше их пролет, тем меньше шаг, и наоборот.

Конструкции несущих систем каркасных зданий вы­бираются в соответствии со схемой передачи усилий в виде поперечных, продольных и пространственных рам (в двух или трех направлениях).

В системах с поперечными рамами (одно-, двух-, трехпролетными) вертикальные нагрузки передаются этим рамам, которые одновременно воспринимают и основную часть горизонтальных нагрузок (рис. 12.25 а). По мере уве­личения шага рам необходимо переходить на балочные клетки (рис. 12.25 б-г), в которых второстепенные балки передают вертикальные нагрузки на главные балки - риге­ли рам. Такой подход характерен для жестких (рамных) каркасов. Второстепенные балки чаще всего располагают в третях или четвертях основного пролета.

В несущих системах с продольными рамами (рис. 12.25 д-з) вертикальные нагрузки передаются рамам, параллельным длинной стороне здания, а поперечные рамы работают, в основном, на горизонтальные нагрузки.

Если сетка колонн и форма плана здания близки к квадрату, то обычно применяют несущие системы, рабо­тающие в двух направлениях (рис. 12.25 и-м). В целях распределения вертикальных нагрузок по обоим направ­лениям расположение главных и второстепенных балок можно менять поэтажно.

В треугольном по плану здании главные балки могут располагаться в двух или трех направлениях параллельно каждой из наружных стен, а второстепенные - перпенди­кулярно им или под углами в 30° и 60° (рис. 12.25 н-р, ч).

Каркасное здание усеченной элиптической формы (рис. 12.25 ш) требует устройства необычного веерооб­разного расположения главных балок и рам, которые вос­принимают вертикальные нагрузки и основную часть го­ризонтальных нагрузок.

Естественно стремление в зданиях, близких к форме круга (рис. 12.25 э), создать систему радиальных рам и связывающих их балок по кольцевым направлениям или, наоборот, кольцевых рам и радиальных балок.

Членение конструкций каркаса на отправочные эле­менты (рис. 12.26) при ограничении веса и габаритов должно обеспечивать максимальную степень их заводс­кой готовности. При определении габаритов отправочных элементов принимают во внимание особенности транс­портировки и монтажа конструкций конкретного объекта строительства. Наиболее часто используют схему с ли­нейными отправочными элементами (рис. 12.26 а), име­ющую преимущество транспортировки и складирования. Другие схемы членения каркаса уступают линейной, но имеют свои преимущества.

Рис. 12.26. Схемы членения стальных каркасов на отправочные элементы

Для ускорения и повышения качества монтажа отпра­вочные элементы на строительной площадке укрупняют в монтажные блоки массой до 15-20 т в специальных стендах и кондукторах, обеспечивающих высокую точ­ность укрупнительной сборки. Монтажные блоки могут быть плоскостными и пространственными (рис. 12.27).




Рис. 12.27. Членение каркаса на монтажные блоки и элементы

В современной практике строительства зданий из стали применяются рамные, связевые и рамно-связевые типы каркасов (рис. 12.28 а-в). При проектировании стального каркаса в силу различных причин не всегда со­храняется регулярность системы и единый принцип ее построения. В высоких зданиях возможны нарушения ре­гулярности в виде выступов и углублений в плане, усту­пов и консольных выносов по высоте, смещений осей и некоторых колонн и ригелей, изменения схемы работы системы по высоте здания, по поперечному или продоль­ному направлению и т.д. (рис. 12.28 г-ж).

Рис. 12.28. Конструктивно-статические схемы стальных каркасов и их возможные сочетания: а - рамный; б - связевый; в - рамно-связевый; г, д - разделение каркаса на крупные зоны с разными системами по высоте; е, ж - местные изменения в системе

В некоторых архитектурно-конструктивных решениях применяют стальные каркасы с наклонными колонна­ми . В этих случаях необходим учет передачи горизон­тальных усилий на каркас от наклонных колонн. Горизонтальные усилия тем больше, чем сильнее колонны откло­няются от вертикали. В зданиях с симметричными карка­сами (рис. 12.29 а, б) горизонтальные усилия от нагрузки взаимно погашаются. В несимметричных каркасах (рис. 12.29 в) требуется мощная жесткая несущая конструкция, способная воспринять горизонтальные усилия. Парные наклонные колонны, например, для образования проезда (рис. 12.29 г) эффективно увеличивают жесткость здания против ветровых горизонтальных нагрузок; V-образные опорные колонны (рис. 12.29 д) также хорошо сопротив­ляются горизонтальным усилиям. В зданиях воронкооб­разной формы с наклонными колоннами создаются зна­чительные горизонтальные силы, которые при симмет­ричном решении каркаса могут быть, в основном, воспри­няты мощными затяжками (рис. 12.29 е).




Рис. 12.29. Каркасы с наклонными колоннами: а, б - симметричные; в - несимметричный; г - с парными сим­метричными внутриконтурными колоннами; д - с V-образными парными опорными колоннами; е - с наклонными симметричны­ми колоннами в верхней части каркаса

Огнестойкость открытых стальных конструкций кар­касов, как правило, не соответствует требованиям, уста­новленным для многоэтажных зданий.

Защита стальных элементов от огня обычно выпол­няется:

- напылением (окраской) или оштукатуривани­ем специальными красками, пастами, растворами с тол­щиной слоя от нескольких долей миллиметра до 2-3 см (Приложение 8);

- облицовкой плитами из гипса, асбестоцемен­та, вермикулита, кремневермикулита, базальтовой мине­ральной ваты и т.п.

Огнезащитные покрытия, выполненные современными штукатурными растворами, способны повысить огнестой­кость конструкций до 3 часов (R180). К достоинствам таких покрытий относится их способность в обычных («непожар­ных») условиях выполнять роль тепло- и звукоизоляции.

Одними из принципиально новых огнезащитных плит­ных материалов являются вермикулитово-силикатные плиты «Минпласт», обладающие малым весом, низким коэффициентом теплопроводности, высокой прочностью и морозостойкостью. Материал имеет отделочное покры­тие (пластик, полимерные пленки, металлические листы и др.). При толщине 50 мм плиты «Минпласт» придают стальным элементам огнестойкость в 2,5 часа. Техноло­гия облицовки предусматривает раскрой плит по размерам, заделку стыков специальным клеевым составом, крепление плит между собой с помощью саморезов.

В исключительных случаях применяется способ повы­шения огнестойкости, при котором полости стальных ко­лонн трубчатого (коробчатого) сечения заполняются во­дой, начинающей автоматически циркулировать при по­жаре. Способ позволяет повысить предел огнестойкости стальных конструкций до 1,5 часов без применения до­полнительных мероприятий по огнезащите.

Коррозионный износ стальных каркасов многоэтаж­ных зданий незначителен и не оказывает существенного влияния на прочность и долговечность. Стальные элемен­ты конструкций преимущественно имеют достаточно мощные сечения из толстой стали, находятся внутри зда­ния в неагрессивной среде и требуют лишь грунтовки. Кроме того, противопожарный защитный слой, нанесен­ный на поверхность элементов, обеспечивает одновре­менно и их защиту от коррозии.

Стальные элементы зданий, которые по нормам не требуют специальной огнезащиты, необходимо защи­щать от коррозии.

Способы защиты металлических конструкций от коррозии приведены в Приложении 9.

Каркас представляет собой систему, состоящую из стержневых несущих элементов — вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.

Основное компоновочное преимущество каркасных систем в свободе планировочных решений, в связи с редко расставленными колоннами, имеющие укрупненные шаги в продольном и поперечном направлениях. Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, воспринимая только собственный вес (самонесущие стены). Это дает возможность применять прочные и жесткие материалы - для несущих элементов каркаса, и тепло — звукоизоляционные материалы - для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.

Каркасными сооружают, как правило, общественные и административные здания. В последние годы строят также и каркасные многоэтажные жилые дома. В зданиях с полным каркасом несущий остов состоит из колонн и ригелей, выполняемых в виде балок для опирания конструкций перекрытий. Скрепленные между собой колонны и ригеля образуют несущие рамы, воспринимающие вертикальные и горизонтальные нагрузки здания.

Роль ограждающих элементов выполняют наружные стены Наружные стены в зданиях этого типа выполняются навесными или самонесущими .

Навесные ненесущие стены в виде навесных панелей прикрепляют к наружным колоннам каркаса. Самонесущие наружные стены опираются непосредственно на фундаменты или на фундаментные балки, устанавливаемые по столбчатым фундаментам. Самонесущие стены прикрепляются к колоннам каркаса. В зданиях с неполным каркасом наружные стены делают несущими, а колонны располагают лишь по внутренним осям здания. При этом ригели укладывают между колоннами, а иногда и между колоннами и наружными стенами. Такой конструктивный тип здания в современном строительстве имеет ограниченное применение.

Здание любого типа должно быть не только достаточно прочным: не разрушаться от действия нагрузок, но и обладать способностью сопротивляться опрокидыванию при действии горизонтальных нагрузок, и иметь пространственную жесткость, т. е. способность как в целом, так и в отдельных его частях сохранять первоначальную форму при действии проложенных сил.

Пространственная жесткость бескаркасных зданий обеспечивается несущими наружными и внутренними поперечными стенами, в том числе стенами лестничных клеток, связанными с наружными продольными стенами, а также междуэтажными перекрытиями, связывающими стены и разделяющими их по высоте здания на отдельные ярусы.

Конструктивная схемы зданий: а — с полным каркасом; б — с неполным каркасом; 1 — колонны; 2 — ригели; З — панели перекрытий; 4 — несущие наружные стены



Здание с несущими наружными стенами и внутренним каркасом: 1 – несущие стены; 2 – стены лестничной клетки; 3 – колонны; 4 стык колонн; 5 – ригели (прогоны); 6 – плита перекрытия

Здание с полным каркасом: 1 – колонны; 2 – навесные стены; 3 – ригели; 4 – стены лестничной клетки

Каркасная система наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения.

Каркасное здание сложнее обогреть, так как помещения получаются бо льшего объема, сложнее проектировать сеть обогревательных приборов, учитывая при этом санитарно-гигиенические требования. В принципе, у каждого отдельного помещения должен быть индивидуальный проект отопления и вентиляции, что создает определенные сложности для здания в целом, значительно удорожая стоимость проектных работ, строительства и эксплуатации. При этом перегородки обладают высокой тепловой инерционностью, намного быстрее нагреваясь и отдавая тепло.

Учитывая все сказанное, каркасные системы до последнего времени было запрещено использовать в массовой жилой застройке. Каркасные сооружения применялись, в основном в зрелищной, выставочной части общественных зданий. При этом, как правило, конструктивная схема сооружения была комплексной, то есть каркасная система сочеталась с бескаркасной в административной части – из условий экономической эффективности возведения и эксплуатации сооружения, его пожарной безопасности и экологических качеств.

Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения свободы планировки, возможности создания большепролетных зальных помещений — компоновочные преимущества каркасных систем перед бескаркасными очевидны.

При этом следует помнить и о недостатках каркасной системы. В среднем, каркасные здания – в 3-7 раз дороже бескаркасных, как показывает многолетний анализ технико-экономических показателей за 70-80-е годы ХХ столетия, с учетом индустриального изготовления большинства несущих элементов.

В каркасной системе намного сложнее и дороже выполнить вертикальные преграды огню (брандмауэры ), поэтому при пожарах, как правило, выгорает целый ярус каркасного здания, ограниченный перекрытиями. Это создает дополнительные сложности при проектировании путей эвакуации.

Каркасная конструктивная система: 1 – колонны каркаса; 2 – ригели каркаса; 3 – сборный настил перекрытия; 4– наружная навесная стеновая панель

Схема каркаса многоэтажного здания: 1- колонны; 2 - ригель; 3- плиты перекрытий; 4 -панели наружных стен

Общий вид зданий с каркасной конструктивной системой: а – общественного; б – промышленного

1- опорные колонны, 2- плиты перекрытия, 3- несущие и связевые ригели, 4- диафрагмы жесткости путей эвакуации, 5- технологическая шахта, 6- лестничные марши, 7- самонесущие наружные стены

В каркасных зданиях вся нагрузка передается на каркас, то есть систему связанных между собой вертикальных элементов (колонн) и горизонтальных (прогонов и ригелей).
Каркасы , применяемые в гражданском строительстве, классифицируются по материалам :

    железобетонный каркас, выполняемый в сборном, монолитном или сборно-монолитном вариантах;

    металлический каркас, часто применяемый при строительстве общественных и многоэтажных гражданских зданий, возводимых по индивидуальным проектам;

    деревянный каркас в зданиях не выше двух этажей.

железобетонный каркас

металлический каркас

деревянный каркас

По составу и расположению ригелей в плане здания в каркасных зданиях
применяют четыре конструктивные схемы:

— I с поперечным расположением ригелей ;

— II с продольным расположением ригелей ;

— III с перекрестным расположением ригелей ;

— IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6х6 м (при дополнительной сетке 6х3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

— элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

— ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Конструктивная схема здания с безригельным каркасом:

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

Каркасная система зданий: а - с поперечным расположением ригелей; б - с продольным расположением ригелей; в - безригельное решение; 1 - самонесущие стены; 2 - колонны; 3 - ригели; 4 - плиты междуэтажных перекрытий; 5 - надколонная плита перекрытия; 6 - межколонные плиты; 7 - панель-вставка

Каркас с поперечным расположением ригелей целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.

Конструктивная схема каркасного здания с поперечным расположением ригелей

Конструктивная схема каркасного здания с продольным расположением ригелей

Четыре типа конструктивных каркасных систем:
а — с поперечным расположением ригелей;
б — с продольным расположением ригелей;

В — с перекрестным расположением ригелей;

г — с безригельным каркасом, при котором ригели отсутствуют, а плиты перекрытий опираются или на капители колонн, или непосредственно на колонны.

1- фундамент; 2 – панели ограждения; 3 – колонны; 4 – продольные ригели; 5 – плиты перекрытия (настил); 6 – поперечные ригели

Каркас с продольным расположением ригелей используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна. В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны.


По характеру статической работы каркасные конструктивные системы гражданских зданий делятся на:

рамные — с жестким соединением несущих элементов (колонны, ригели) в узлах в ортогональных направлениях плана здания. Каркас воспринимает все вертикальные и горизонтальные нагрузки.

рамно-связевые — с жестким соединением в узлах колонн и ригелей в одном на правлении плана здания (создание рамных конструкций) и вертикальными связями, расставленными в перпендикулярном направлении рамам каркаса. Связями служат стержневые элементы (крестовые, портальные) или стеновые диафрагмы, соединяющие соседние ряды колонн. Вертикальные и горизонтальные нагрузки воспринимаются рама ми каркаса и вертикальными пилонами жестких связей.

связевые — отличаются простотой конструктивного решения соединений колонн с ригелями, дающее подвижное (шарнирное) закрепление. Каркас (колонны, ригели) воспринимает только вертикальные нагрузки. Горизонтальные усилия передают на связи жесткости — ядра жесткости, вертикальные пилоны, стержневые элементы.

Рамная система
каркасных зданий обладает большой жесткостью, устойчивостью и создает максимальную свободу планировочных решений. Система обеспечивает надежность в восприятии нагрузок и равномерность деформаций рам, расположенных в здании в продольном и поперечном направлениях. Недостаток (при сборном железобетонном каркасе) — сложность в унификации узловых соединений из-за разных величин усилий в них по высоте здания. Такое решение железобетонного каркаса наряду со стальным находит применение в сложных грунтовых условиях и в сейсмических районах.

При изготовлении рамного каркаса из сборного железобетона применяется разрезка его несущих элементов на Г -, Т — и Н -образные элементы, позволяющая перенести узловые соединения в наименее напряженные участки — места нулевых изгибающих моментов от вертикальных нагрузок.

Рамно-связевая система обеспечивает пространственную жесткость за счет совместной работы поперечных рам, вертикальных диафрагм жесткости и перекрытий, выполняющих функцию жестких горизонтальных дисков. Вертикальные нагрузки передают на каркас как на рамную систему. Горизонтальные нагрузки, действующие перпендикулярно плоскости рам, воспринимают вертикальные диафрагмы жесткости и диски перекрытий, а нагрузки, действующие в плоскости рам, воспринимает рамно-связевой блок, состоящий из вертикальных диафрагм жесткости и рам каркаса.

В результате проведенных теоретических исследований доказано, что рамно-связевая система удовлетворяет условию минимального расхода материала в несущих вертикальных конструкциях при нулевой жесткости поперечных рам, то есть когда система превращается в чисто связевую.

Связевая система
все вертикальные нагрузки передает на стержневые элементы каркаса (колонны и ригели), а горизонтальные усилия воспринимают жесткие вертикальные связевые элементы (стеновые диафрагмы и ядра жесткости), объединенные между собой дисками перекрытий. В связевом каркасе ограничена прочность и жесткость стыков ригелей с колоннами. Узлы конструируют податливами с помощью стальных связей («рыбок»), ограничивающих защемление.

Внедрение связевой системы в производство элементов сборного железобетонного каркаса позволило провести широкую унификацию его основных элементов (колонн и ригелей) и их узловых соединений.

В 80-х годах прошлого столетия была разработана номенклатура индустриальных железобетонных изделий серии 1.020-1 (Серия 1.020-1/87 ), позволяющая возводить как гражданские, так и промышленные каркасно-панельные здания любой конфигурации и этажности. В состав номенклатуры серии помимо колонн и ригелей, включены панели перекрытий, диафрагм жесткости и наружных стен.

Из унифицированных элементов могут быть запроектированы каркасы с продольным и поперечным расположением ригелей.

Габаритные схемы компонуются на следующих условиях:

    оси колонн, ригелей и панелей диафрагм жесткости совмещены с модульными осями здания;

    шаг колонн в направлении пролета плит перекрытий равен 3,0; 6,0; 7,2, 9,0 и 12,0 м.

    шаг колонн в направлении пролета ригелей соответствует 3,0; 6,0; 7,2 и 9,0м.

    высота этажей в соответствии с назначением и укрупненным модулем ЗМ составляет 3,3; 3,6; 4,2; 6,0 и 7,2м.

Кроме того для квартирных и специализированных жилых домов (пансионаты, гостиницы, общежития и т.п.) высота этажей принимается равной 2,8 м.

Компоновка диафрагм жесткости может быть разнообразной, но предпочтительнее устройство пространственных связевых систем открытого или замкнутого сечений.

Пространственная жесткость каркасных зданий обеспечивается:

    совместной работой колонн, связанных между собой ригелями и перекрытиями и образующих геометрически не изменяемую систему;

    установкой между колоннами стенок жесткости или стальных вертикальных связей;

    сопряжением стен лестничных клеток с конструкциями каркаса;

    укладкой в междуэтажных перекрытиях (между колоннами) панелей-распорок.

Конструктивные элементы. Колонны имеют высоту в 2-4 этажа, что позволяет в зданиях, с соответствующей этажностью, применять бесстыковые колонны.

Наряду с бесстыковыми колоннами в номенклатуру включены следующие типы колонн:

    нижние высотой в два этажа и расположением низа колонны ниже нулевой отметки на 1,1м.;

    средние — высотой в три-четыре и верхние в один-три этажа.

Предусмотрены колонны сечением 30×30 см для зданий высотой до 5-ти этажей и колонны сечением 40х40см для всех остальных. Колонны выпускаются двухконсольнымии и одноконсольными. Двухконсольные колонны устанавливают по средним и крайним рядам при навесных панелях наружных стен. Одноконсольные колонны располагают по крайним рядам при самонесущих наружных стенах и по средним рядам при одностороннем примыкании стен-диафрагм жесткости в лестничных клетках. Стык осуществляется на сварке выпусков арматуры с последующим омоноличиванием и расположением его выше плоскости консоли на 1050 мм.

Ригели — таврового сечения с полкой понизу для опирания плит перекрытия, что уменьшает его конструктивную высоту. Стык ригеля с колонной выполняет со скрытой консолью и приваркой к закладным деталям консоли и колонны (частичное защемление).

Перекрытия — многопустотные плиты высотой 220 мм и пролетом до 9,0 м. Плиты типа 2Т применяют для пролетов 9 и 12 м. Элементы перекрытий разделяют на рядовые и связевые (плиты распорки). Связевые плиты перекрытия устанавливают между колоннами в направлении перпендикулярном ригелям, обеспечивая их устойчивость.

Перекрытия испытывают поперечный изгиб от вертикальных нагрузок и изгиб в своей плоскости от горизонтальных (ветровых, динамических) воздействий.

Необходимая жесткость горизонтального диска перекрытия, собираемого из сборных железобетонных элементов, достигается установкой связевых плит-распорок между колоннами, сваркой закладных соединительных элементов и устройством шпоночных швов из цементного раствора между отдельными плитами. Полученный жесткий горизонтальный диск, воспринимая все нагрузки, включает в совместную работу вертикальные диафрагмы жесткости.

Стены — диафрагмы жесткости монтируют из бетонных панелей высотой в этаж, толщиной 140 мм. и длиной, соответствующей расстоянию между колоннами в пределах, которых они установлены. При шаге колонн 7,2 и 9,0 м стены-диафрагмы проектируют составными из двух-трех панелей, с координационными размерами по ширине 1,2, 3,0 и 6,0 м. Они могут быть глухими или с одним дверным проемом. Элементы диафрагм жесткости между собой и элементами каркаса соединяют сваркой закладных деталей, не менее чем в двух местах по каждой стороне панели с последующим замоноличиванием.

Шаг диафрагм определяется расчетом, но не превышает 36,0 м.

Панели наружных стен могут быть запроектированы самонесущими или ненесущими (навесными) конструкциями. Разрезка стен на панели — двухрядная. В номенклатуру входят поясные простеночные, под карнизные, парапетные, цокольные панели.

Панели самонесущих стен устанавливают по цементно-песчаному раствору на цокольные или простеночные панели и крепят поверху к закладным деталям колонн. Панели ненесущих стен навешивают на ригели, консоли или опорные металлические столики колонн и закрепляют в плоскости перекрытия.

Привязка панелей самонесущих и несущих стен к каркасу единая — с зазором 20 мм между наружной гранью колонны и внутренней гранью панели наружной стены.

Изоляция стыков панелей решена по принципу закрытого стыка

Компактные в плане отапливаемые здания длиной до 150 м проектируют без температурных швов. Здания с изрезанным очертанием плана, приводящее к ослаблению горизонтальных дисков перекрытий, расчленяют на температурные блоки, длина которых увязана с членением объемной формы здания, но не превышает 60 м.

Как и в серии 1.020.1 каркас КМС-К1 собирают из колонн, ригелей, плит перекрытий, панелей жесткости и навесных панелей наружных стен.


Фрагмент фасада каркасного здания серии 1.020-1: А — схема разрезки наружной стены на панели; а — герметизация вертикальных стыков; б — крепление верха панели к колонне; \ — защитный слой; 2 — эластичная мастика; 3 — упругий шнур (гернит); 4 — колонна; 5 — кирпичная кладка; 6 — цементный раствор; 7 — наружная стеновая панель; 8 — стальные закладные детали; 9 — стальные соединительные элементы

Колонны — выполняют одно- и двух-этажными, единого сечения 400×400 мм, а их несущая способность меняется с изменением марок бетона и процента армирования переходом от гибкой (стержни) к жесткой (стальные профили) арматуре. В серии предусмотрены колонны рядовые, фасадные и колонны с вылетом консолей до 1,2 или 1,8 м., служащие опорами для плит балконов и лоджий.

Стык колонны располагают на 710 мм выше плиты перекрытия, что упрощает монтаж. При монтаже колонн применяют специальные кондукторы, обеспечивающие соосность. Соединение осуществляется ванной сваркой плоских торцов колонн, с последующей инъекцией цементного раствора.

Ригели — таврового сечения высотой 450, 600 и 900 мм (последний для пролетов в 12,0м). Колонну соединяют с ригелем при помощи его опирания на скрытую (в высоте ригеля) консоль и с частичным защемлением установленной по верхней полки ригеля специальной фасонки — «рыбки», а также сваркой с закладными элементами консоли колонны. Значения воспринимаемых таким узлом изгибающих моментов и растягивающих усилий ограничены пределом текучести «рыбки». Поэтому в расчетах при восприятии вертикальных нагрузок защемление ригеля на опоре не учитывают, рассматривая его как шарнирное соединение.

Различают ригели рядовые и фасадные. Ригель фасадный имеет Z -образную форму, которая диктуется особенностью его работы — опирание плит перекрытий на нижнюю полку с одной стороны и навеской наружных стеновых панелей на верхнею полку с другой стороны.

Перекрытия — выполняют из многопустотных настилов высотой в 220 мм. Настилы различают в соответствии с размещением в плане — рядовые, фасадные, настилы-распорки, сантехнические и доборные.

Для создания единого диска перекрытия боковые поверхности настилов имеют шпоночные углубления, которые (после их раскладки) замоноличивают, создавая шпоночные швы, воспринимающие сдвигающие усилия..

Стены жесткости — проектируют из железобетонных панелей высотой на этаж и толщиной в 180 мм. Они имеют одну или две полки для опирания настилов перекрытий. Соединение с несущими элементами каркаса осуществляют при помощи стальных сварных связей числом не менее двух по каждой стороне.

Панели наружных стен — могут иметь горизонтальную или вертикальную разрезку по фасадной плоскости здания.

При двухрядной (горизонтальной) разрезки панели наружных стен подразделяют на поясные (ленточные), простеночные и угловые.

Координационные размеры панелей наружных стен горизонтальной разрезки по длине соответствуют шагу колонн, а по высоте составляют — 1,2; 1,5; 1,8 и 3,0 м. Простеночные панели могут быть высотой в — 1,5; 1,8 и 2,1м, а шириной кратны модулю 300 мм.

При вертикальной разрезке — все размеры панелей по длине и высоте кратны модулю 300 мм.

Узел опирания панелей наружных стен унифицирован для разных систем разрезок на панели фасадных плоскостей. Панели опирают на несущую конструкцию перекрытия (ригель, или настил) на глубину в 100 мм и приваривают при помощи закладных и соединительных элементов на расстоянии 600 мм в плане от оси колонны. Верх панели крепят к колонне, так же с помощью сварки соединительных элементов.

Горизонтальные стыки панелей наружных стен осуществляются в четверть с нахлесткой в 75мм. Изоляция вертикальных и горизонтальных сопряжений панелей выполняется по принципу закрытого стыка

Система позволяет создать многовариантные объемно-планировочные решения за счет применения колонн с консолями больших вылетов (1,2 — 1,8 м) для создания лоджий, консольных ригелей с вылетом до 3,0 м, образующих выступающие объемы. Возможно устройство зальных помещений с пролетами в 18,0-24,0 м. Разнообразие архитектурных композиций зданий достигается применением двухрядной (горизонтальной) и вертикальной разрезки, так же различных вариантов защитно-отделочных слоев наружных стеновых панелей.


Каркас серии KMC — К1. Основные планировочные ситуации стен жесткостей и несущих конструкций перекрытий: Р — ригель рядовой; РФ — ригель фасадный; НВ — настил; НРВ -настил-распорка; НРФ — настил-распорка фасадная; МФ — фасадная стеновая панель; СЖ — стенка жесткости; 1 — колонна с плоскими стальными торцами; 2 — полуавтоматическая сварка под слоем флюса; 3 — стальная центрирующая прокладка; 4 — закладная деталь; 5 — соединительная планка; 6 — цементный раствор; 7 — соединительная пластина; 8 — монолитный армированный бетон; 9 — закладная деталь

Безригельный каркас. Основной архитектурный недостаток каркасных систем для применения их в гражданском строительстве являются выступающие в интерьер из плоскости перекрытий балки-ригели. Существуют конструктивные схемы каркасов позволяющие исключить этот недостаток:

Система, формирующаяся из сборных плит сплошного сечения, опираемых на колонны в угловых точках сетки колонн (система КУБ);

Каркасная система с предварительно-напряженной арматурой в скрытых риге лях, образуемых в построечных условиях (система КПНС).

Система безригельного каркаса КУБ - сборный безкапительный каркас, состоящий из колонн квадратного сечения и плоских плит перекрытий.

Сетки колонн 6×3 и 6×6 метров при необходимости могут увеличиваться до размеров 6х9 и 9х12 метров. Сечение колонн 30×30 см и 40×40 см высотой в один или несколько этажей с максимальной высотой до 15,3 м.

Плиты перекрытия в плане размером 2,8×2,8 м толщиной от16 до20 см. В зависимости от расположения, подразделяются на надколонные, межколонные и плиты-вставки. Членение перекрытия на сборные элементы сделано с таким расчетом, чтобы стыки плит располагались в зонах с наименьшей величиной (приближаемая к нулю) изгибающих моментов от вертикальных нагрузок.

Последовательность монтажа перекрытия на смонтируемые колонны ведется в следующем порядке: — устанавливаются и привариваются к арматуре колонн надколонные плиты, затем межколонные и, наконец, плиты-вставки. Межколонные и плиты-вставки имеют шпонки, позволяющие легко осуществить их соединения на сварке. После замоноличивания стыков создается пространственная жесткая конструкция.



Система безригельного каркаса (КУБ): а — общий вид; б — схема последовательности монтажа; в — схема разреза здания

Преимущество системы в отсутствии выступающих элементов в потолочной плоскости и в простоте монтажа, с помощью легких мобильных кранов.

Безригельная рамная или рамно-связевая каркасная система гражданских зданий высотой до 16 этажей рассчитана на вертикальные нагрузки на перекрытие в 1250 кг/ м 2 . При больших нагрузках (2000 кг/ м 2) ограничивают этажность здания 9-тью этажами.

Система обладает архитектурно-планировочными и конструктивными достоинствами. Гладкий потолок дает возможность гибко решать планировку внутреннего пространства создавать трансформируемые помещения. Консольные вылеты перекрытий обеспечивают вариантность пластических решений фасадов.

Безригельный каркас универсален — он с успехом применим, как в жилых зданиях, так и общественных (детских садах, школах, торговых предприятиях, спортивных и зрелищных) сооружениях и пр.

Система со скрытыми ригелями в плоскости перекрытия (КПНС) проектируется по связевой схеме из сборных элементов: колонн, плит, перекрытий и стен диафрагм жесткости. Связь между сборными элементами перекрытия осуществляется в результате устройства в построечных условиях монолитного ригеля с канатной напряженной арматурой, пропущенной через сквозные отверстия в колонне в ортогональных направлениях. Предварительное напряжение арматуры осуществляется на уровне этажных перекрытий, создавая двухосное обжатие плит перекрытия

Плиты перекрытия имеют высоту в 30 см и состоят из верхней плиты, толщиной в 6 см, и нижней — 3 см и перекрещенных бортовых ребер. При монтаже плиты перекрытий укладывают на временные капители колонн и опоры, которые устанавливают уже на смонтированный нижний уровень. Плиты перекрытия могут быть выполнены на ячейку с опиранием на колонны по 4 углам или разбиты на две плиты, соединенные монолитным армированным швом. Конструкция, собранная из сборных элементов колонн и плит перекрытий — работает как единая статическая система, воспринимающая все силовые воздействия, за счет сил сцепления, возникающих между отдельными сборными элементами, и напряжений стальных канатов.



Каркас со скрытыми ригелями (КПНС): А — схема сборки; Б — узел плана перекрытия у колонны; 1 — монолитный ригель; 2 — шов омоноличивания; 3 — канатная натяжная арматура: 4 — плита перекрытия; 5 – колонна

Значительным шагом назад от системы надежности и долговечности индустриального производства конструктивных элементов каркасных зданий стало возвращение на строительные площадки «мокрых» процессов с начала «нулевых» годов. Монолитные балочные и безбалочные каркасы имеют низкую степень технологичности, не позволяют возводить ограждающие конструкции апробированных типов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Пермский национальный исследовательский политехнический университет

Строительный факультет

Кафедра строительного инжиниринга и материаловедения

Реферат на тему:

Конструктивные схемы каркасных многоэтажных гражданских зданий

Выполнил: студент ЭУН 6

Никитин В.С.

Проверил: профессор, к.т.н. Новопашина Е.И.

Введение

Высокая степень урбанизации нашей страны в ХХ веке обусловила необходимость в расселении большого количества людей на относительно небольших пространствах.

Массовое жилищное строительство, особенно в послевоенный период радовало жителей Советского Союза возможностью переезда из «затхлых» бараков, сначала в отдельные кирпичные пятиэтажки названные «хрущёвками», а потом соответственно в полногабаритные панельные дом. Но в связи с тем, что свободных территорий для нового строительства, в развитом и благоустроенном городском пространстве становилось всё меньше, а ограниченность по высоте и увеличение требований к качеству возводимого жилья становиться всё больше, на первый план выходят каркасные технологии строительства.

Градостроительным планом Перми предусмотрено возведение больших многофункциональных жилых комплексов на территории аэропорта «Бахаревка», микрорайонах «Ива» и «Вышка», в центре Перми между улицами Революции, Куйбышева и Комсомольским проспектом.

В данной работе сделана попытка проанализировать каким образом строятся каркасные дома в России и какие технологии каркасного домостроения придут им на смену.

Виды каркасного многоэтажного строительства

На сегодняшний день можно выделить три основные линии в возведении зданий по каркасной технологии: возведение зданий из железобетонных межосевых связей, произведённых на заводе, монтаж монолитно-каркасных домов и строительство «небоскрёбов» из трубобетона.

История возникновения и развития методов каркасного строительства

каркасный строительство многоэтажный

Монолитное домостроение известно человечеству с давних времён. Существует гипотеза, что этот метод использовался ещё при строительстве египетских пирамид. Бетон в современном понимании стал применяться древними римлянами. Из него сооружались крупные монолитные конструкции, способные перекрывать широкие пролёты.

Новый всплеск применения бетона в массовом строительстве относится к середине 19 века. Это было связано с изобретением портландцемента, который был запатентован в 1824 Джозефом Эспдином, каменщиком из Лидса, что в Англии. Он дал материалу такое название, поскольку искусственный камень, сделанный из этого цемента, по прочности походил на природный, добывавшийся на о. Портленд.

Хочется отметить, что в России в этот период инженер Егор Челиев решает задачу создания гидравлического цемента из определённым образом составляемой и обжигаемой сырьевой смеси известняка и глины. Созданный Егором Челиевым цемент обладал высокими строительными качествами и в 1813 - 1824 гг. широко использовался при строительстве различных сооружений, а также при восстановлении разрушенной пожаром войны 1812 года Москвы. В 1825 г. Челиев издает книгу в которой освещает вопросы теории состава и свойств цемента, сообщает о способах и областях его использования. К этому же периоду можно отнести и появление железобетона.

Железобетон - как строительный материал запатентован Жозефом Монье в 1867 году. Постановлением совета министров СССР от 9 мая 1950 года №1911 «О снижении строительства», было инициировано проектирование и строительство первых высокомеханизированных заводов ЖБИ. Постановление ЦК КПСС и Совета Министров СССР от 19 августа 1954 года «О развитии производства сборных железобетонных конструкций и деталей для строительства» запустило процесс постройки 402 заводов сборных железобетонных конструкций. Именно с этих постановлений началась разработка и внедрение в жизнь каркасных методов применения межосевых связей из железобетонных конструкций.

Первая в мире методика расчёта трубобетонных конструкций была опубликована профессором Гвоздевым в 1932 году. В СССР была разработана прекрасная научно-техническая база строительства зданий и сооружений по технологии каркасов с применением трубобетона как новой несущей конструкции. Данная технология широко применяется во всём мире при строительстве небоскрёбов.

Железобетонный каркас .

Самый распространённый метод каркасного строительства в советский период времени, был основан, как уже сказано выше, из железобетонных конструкций. Для производства зданий по такому методу была специально разработана методика строительства Серии 1.020.

Элементами каркасного здания являются несущие стойки или колонны, ригели и панели перекрытий и покрытий. Таким образом, все усилий и нагрузки воспринимаются колоннами, расположенными как внутри, так и по периметру здания, и передаются через фундаменты на грунт основания.

Стойки или колонны сборного железобетонного каркаса принимаются высотой на один или два этажа, сечение колонн подбирается по расчёту в зависимости от нагрузок. Колонны по высоте соединяются между собой сварными стыками, для чего верхние и нижние концы колонн снабжаются стальными обоймами, приваренными к арматуре. Колонны можно сваривать между собой, сваривая выпущенные концы продольной арматуры с последующим замоноличиванием стыка.

На рисунке показаны колонны на два этажа с закладными деталями: обоймы в оголовке и пяте для стыкования колонн, консоли для опирания вкладышей. Сборные железобетонные ригели могут быть таврового или прямоугольного сечения.

Сборный железобетонный каркас - детали сопряжения колонны с ригелями:

1. Колонна;

2. Уголок опирания вкладыша;

3. Вкладыш;

4. Стержни для приварки ригеля;

6. Оголовок колонны с центрирующей прокладкой.

Узел сопряжения прогона с колонной колонн производиться сваркой стальных закладных деталей прогона с выступающими из стойки двутавром и двумя круглыми стержнями. Между стойками вкладываются железобетонные вставки, которые опираются на закладные детали колонн и привариваются к ним. Закладные детали после проверки качества сварки покрываются антикоррозионным составом и замоноличиваются бетоном.

Главные достоинства ж/б каркаса:

· Заводское производство конструктивных элементов гарантирует качество произведённых деталей и их оперативный монтаж;

· Меньшая трудоёмкость и лёгкость возведения в связи с отсутствием монолитного железобетона.

· Стандартизированная (типовая) схема и серийное изготовление упрощает и проектирование и производство жилых многоэтажных зданий.

Основные недостатки железобетонного каркаса:

· Неудобное проектирование жилых зон и открытых пространств в связи со стандартизацией заводских конструкций ограниченных 3,4 и 6 метровыми размерами изготовляемых конструкций.

· Слабая сейсмоустойчивость, низкое сопротивление бетона на растяжение и прогибание конструкций.

· Большая звуко - и теплопроводность.

Пермские застройщики по ж/б каркасной технологии.

На сегодняшний день можно выделить следующих представителей строительного рынка по данной дехнологии:

· Краснокамский завод ЖБК.

Монолитно-каркасная технология.

Технологические этапы монолитного строительства:

· Устройство арматурного каркаса;

· Установка опалубки;

· Заливка бетона;

· Уход за бетоном (прогрев, усадка вибраторами);

· Снятие опалубки.

Монолитное строительство домов подразумевает использование нескольких вариантов каркасов: с несущими продольными стенами, с несущими поперечными стенами, с перекрытиями на несущих колоннах.

В отличии от заводских конструкций, которые необходимо сваривать между собой при производстве монолитных работ возможно использование стеклопластиковой арматуры, которая обладает не только меньшим весом в сравнении с металлом но и не подвержена коррозии.

За счёт сплошного перевязывания арматурой колонн и плит перекрытия, и правильной установки щитов опалубки в конструкции здания нет узлов сопряжения - она вся едина и монолитна.

Бетон, изготовленный в заводских условиях с необходимой прочностной маркой, подаётся на высоту кранами или автобетононасосами. Заполненные бетоном каркасы в зимнее время прогреваются трансформатором. Для предотвращения возникновения пустот, и для набора необходимой плотности, при строительстве зданий обязательно необходимо производить трамбовку массы глубинными или поверхностными вибраторами.

Также необходимо не забывать ухаживать за бетоном, в летнее время производить поверхностное увлажнение после затвердения, а зимой укрывать от переохлаждения.

После того, как бетон набрал необходимые прочностные характеристики, производиться съёмка опалубки и установка её на новый уровень.

Главные достоинства монолита:

· Свободный выбор конфигурации будущего здания, независящий от типовых элементов

· Высокая прочность в следствии отсутствия швов и стыков в каркасе здания.

· Малая усадка здания, что ускоряет процесс отделки здания

· Высокая морозо- и сейсмоустойчирваость.

Основные недостатки монолитно каркаса:

· Высокая трудоёмкость и стоимость.

· Высокая теплопроводность, требующая дополнительного утепления.

· Плохая звукоизоляция.

· Повышенные градиенты свойств.

Реализованные объекты в Перми:

· ж/к Альпийская горка - застройщик «Камская долина»

· ж/к Грибоедовский - застройщик «ПИК Регион»

· ж/к «Сапфир» - застройщик «Сатурн-Р» и др.

Трубобетон - технология будущего.

В Советском Союзе была разработана научно-техническая база строительства зданий и сооружений по технологии каркасов с применением трубобетона как новой несущей конструкции. Применение трубобетона позволяет не только отказаться от устаревшей технологии несущих стен, но и облегчить строящееся здание в среднем в два раза. Как я уже указал в начале данной работы, первая в мире методика расчёта трубобетонных конструкций была опубликована профессором Гвоздевым А.А. в 1932 году, а массово используют её сегодня в Германии, Китае, Японии, США и даже в последнее время в Казахстане, но не в России.

Чем выше строиться здание, тем больше требования к материалу. А для того чтобы бетон сам себя нёс необходимо постоянно увеличивать толщину колонн. В трубобетоне удачно сочетаются способность метала, как обоймы работать на растяжение и изгиб и способность бетона работать на сжатие.

При изготовлении трубобетона используются круглые цилиндрические, квадратные или прямоугольные трубы. В некоторых случаях внутри бетонного ядра устанавливается арматура

Армирование бетонного ядра: а). гибкой арматурой, б) жёсткой арматурой в виде трубы, в) уголком, г) двутавром.

Примеры армирования бетонного ядра: а) трубобетонный сердечник неармированный; б) с высокопрочной арматурой в) жёсткий рамный узел, колонна с перекрытием.

Для обеспечения высокой плотности уплотнения бетонного ядра применяется глубинные или внешнее вибрирование.

Существует также инъекционный метод заполнения трубы бетоном через нижнее отверстие в боковой грани

Сопряжение трубобетонной конструкции с ригелями перекрытия .

Преимущества трубобетона:

· Скорость производства работ.

· Сокращение расхода бетона в 1,5 -2 раза в сравнении с монолитом;

· Конструкция при монтаже обладает всеми преимуществами металлоконструкций, отличаясь при этом более высокой огнестойкостью;

· Значительное более высокие характеристики как на сжатие, так и на изгиб всех элементов каркаса;

· Металл, работая в связке с бетоном в закрытой конструкции, обеспечивает более высокий коэффициент устойчивости, чем в конструкциях с открытым армированным бетоном;

· В трубобетоне практически не бывает трещин.

Основные недостатки трубобетона:

· Высокая стоимость и повышенные требования к качеству труб большого диаметра;

· Воздействие коррозии, что требует дополнительных и постоянных затрат на обработку металла;

· Возможность расслоения или отслаивания от наружного ядра бетонной смеси при подаче в трубу, что требует особого внимания, как к самому бетону, так и к процессу его подачи и трамбовке;

· Необходимость дополнительного просчитывания вариантов стыков трубобетонных конструкций с несущими конструкциями перекрытий зданий;

· Возможность разрыва металлической оболочки под действием внутреннего давления паров связанной воды, освобождающейся при сильном нагревании во время пожара;

· Сложность обеспечения совместной работы бетонного ядра и внешней стальной оболочки при эксплуатационных нагрузках.

Заключение

В данной работе автор показал три основных метода возведения каркасных многоэтажных зданий.

Строительство домов на основе сборных железобетонных столбов отличается высокой скоростью монтажа, но сильно ограничивает проектировщиков как с высотностью не более 20 этажей, так и стандартизацией проектных решений не давая разыграться фантазии архитекторов.

Строительство домов по монолитно каркасной технологии даёт возможность реализовать самые оригинальные замыслы и проявить выдумку особенно для будущих покупателей жилья Премиум класса. Даже большая трудоёмкость и сложности при производстве работ в зимний период не останавливают многих Пермских застройщиков при выборе способа возведения жилых комплексов.

Технология трубобетона, рождённая и детально проработанная ещё в Советском Союзе позволяет выйти на новые горизонты, как в прямом, так и в переносном смысле, но пользуемся ей не мы а наши коллеги из Китая, Японии и США. В мире накоплен большой опыт строительства высотных домов с применением трубобетона даже в сейсмоопасных зонах. Трубобетон обладает всеми достоинствами ж/б и монолитно-бетонных конструкций, но экономичней и в два раза более быстрый способ строительства зданий. Самое главное достоинство трубобетона его способность выдерживать длительные предельные нагрузки.

Список источников и литературы

Источники

1. http://stroisdat.ru

2. http://ru.wikipedia.org/wiki/железобетон

3. http://szhbs.ru

4. http://www.beton-karkas.ru

5. http://www.permgenplan.ru

Литература

6. Гореев В. Металлические конструкции / В.В. Гореев, б.Ю. Уваров, В.В. Филипов // Конструкции зданий: учебник для строительных вузов. - М. Высшая школа 1999.

7. Маклакова Т.Г. Проблемы становления высотного строительства в России / Журнал «Строительная техника» 28.11.2006

8. Могильцева И.Н. Разумова О.В. Трубобетонный каркас - рациональный выбор при проектировании высотных зданий. / Журнал «Вестник приднепровской академии архитектуры»№1-3 2012г.

9. О. Храбрый. Они не видят. Они не слышат. Они ничего не читают. Журнал «Эксперт» №9 от 03 марта 2008г.

Размещено на Allbest.ru

...

Подобные документы

    Типология и классификация гражданских зданий. Основные требования, предъявляемые к зданиям. Основные положения модульной системы. Конструктивные схемы бескаркасных, каркасных зданий и зданий со смешанным каркасом. Модульная система координации размеров.

    реферат , добавлен 15.01.2011

    Составные элементы конструктивных систем и их назначение. Технологические решения и основные типы фундаментов. Конструктивные системы остова многоэтажных зданий. Типы лестничных клеток и лестнично-лифтовых блоков. Проектирование фасадных систем и крыш.

    реферат , добавлен 26.11.2010

    Индивидуальный жилой дом. Блокированные дома. Объёмно-планировочные решения блокированных домов. Гибкая планировка квартир. Лестнично-лифтовые узлы, применяемые в многоэтажных домах. Конструктивные решения многоэтажных жилых зданий.

    реферат , добавлен 05.03.2004

    Основные требования к современным промышленным зданиям. Объемно-планировочные решения промышленных зданий. Типы многоэтажных промышленных зданий. Ячейковые и зальные промышленные здания. Унифицированные параметры одноэтажных производственных зданий.

    презентация , добавлен 20.12.2013

    Понятие о каркасах, область их применения и классификация по разных признакам, разновидности и функциональные особенности. Главные элементы сборного и монолитного железобетонного каркаса. Привязка колонн и стен многоэтажных зданий к координатным осям.

    презентация , добавлен 20.12.2013

    Категорирование высотных зданий и составление их рейтингов. Три критерия измерения высоты здания. История небоскребов - очень высоких зданий с несущим стальным каркасом. Конструктивные схемы высотных зданий. Разные варианты составных стальных колонн.

    презентация , добавлен 06.03.2015

    Конструктивная схема здания как система вертикальных (стены, столбы) и горизонтальных (перекрытия, элементов, которые обеспечивают зданию пространственную жесткость), особенности их разработки для бескаркасных, каркасных зданий, с неполным каркасом.

    контрольная работа , добавлен 19.01.2012

    Выбор механизмов и организация строительной площадки при возведении крупнопанельных зданий. Возведение зданий с переставной опалубки. Расстановка башенных кранов и путей под них. Монтаж строительных конструкций. Организация строительной площадки.

    контрольная работа , добавлен 18.05.2011

    Элементы оконных блоков промышленных зданий. Наружное и внутреннее открывание деревянных окон для многоэтажных зданий со спаренными и раздельными переплетами. Обрамление воротного проема, основные виды и оборудование ворот. Двери производственных зданий.

    презентация , добавлен 18.04.2016

    Конструктивные типы зданий, их достоинства и недостатки. Здания, возведенные по каркасной технологии ("канадские"). Современные требования к жилью, понятие его рациональности, безопасности и комфортности. Составные факторы экономической оценки жилья.

8.1.Характеристика конструкций.

Каркасные многоэтажные здания (в пределах секции), строятся прямо-угольными в плане, без перепадов высот. Все размеры несущих и огражда-ющих конструкций кратны номинальным размерам, с восприятием горизон-тальных усилий жёсткими узлами рам; связевой – при которой колонны ра-ботают только на вертикальные нагрузки, а горизонтальные воспринимаются системой вертикальных дисков и ядер жёсткости;и рамно-планировочного модуля 0,5м и высотного 0,6м. Сетка колонн кратна укрупнённому планиро-вочному модулю 1,5м. Здания могут иметь подвесное или напольное подъёмно-транспортное оборудование.

Промышленные здания выполняются из железобетонных элементов с сеткой колонн 6х6 или 6х9м, высотой этажей 3,6…7,2м, количество этажей от 2 до 12, с размерами температурных блоков (секций) до 60м.

Конструктивные схемы зданий выполняются по рамной схеме (c воспри-ятием горизонтальных усилий жёсткими узлами рам) и рамно-связевой схеме (с передачей усилий на поперечные и торцевые стены, стены лестничных клеток и лифтовых шахт).

В основную номенклатуру сборных железобетонных элементов много-этажных каркасных зданий входят:

-фундаменты , стаканного типа, сборные или монолитные железо-бетонные. Площадь опирания обосновывается расчётом.

- Колонны , квадратного сечения 40х40 или 60х60см. Высота колонн зависит от принятой их высотной разрезки и может быть на 1-5эта-жей, но не должна превышать 20м (из условий удобства транспорти-рования и монтажа). Стыки колонн выполняются жёсткими и, как правило, проектируются на высоте около 1м от отметки верха пере-крытия.

- Ригели – несущие элементы балочного типа, таврового сечения с одной или двумя полками для плит перекрытий, опирающиеся на консоли колонн. Соединения закладных деталей колонн и ригелей осуществляются сваркой, с обетонированием узлов.

- Плиты перекрытий (покрытий) применяются многопустотные или ребристые. Укладываются на полки ригелей и свариваются между собой через закладные детали. Швы между плитами заполняются бетоном. Плиты перекрытий разделяются на основные, межколон-ные и доборные.

- Диафрагмы жёсткости – элементы обеспечивающие жёсткость каркаса, имеют поэтажную разрезку с контактным горизонтальным стыком. В номенклатуру входят двухполочные и однополочные диафрагмы с проёмами и без проёмов.

- Стеновые панели навесные, устанавливаются на монтажные столи-ки, привариваемые к закладным деталям колонн. Размеры по высоте 1,2 и 1,8м, по ширине зависит от пролёта.


8.2. Методы возведения зданий.

Многоэтажные каркасные здания в зависимости от объёмно-планиро-вочных и конструктивных решений разделяются на однородные (с повторяю-щимися типовыми ячейками и конструкциями) и неоднородные (с неравно-мерным распределением объёмов по этажам и секциям).

Технологический процесс возведения однородных зданий включает в себя четыре цикла:

1 – устройство подземных конструкций;

2 – возведение надземных конструкций и устройство кровли;

3 – выполнение отделочных и специальных работ;

4 – монтаж технологического оборудования.

Однородные здания возводят по горизонтально-восходящей или вер-тикально-восходящей схемам. Организационно-технологическим решением является создание объектных ритмичных или кратно-ритмичных, взаимо-увязанных во времени и пространстве потоков с максимальным совмещени-ем во времени строительно-монтажных работ.

Неоднородные здания расчленяют на ряд неодинаковых, но однород-ных по своим конструктивным особенностям и по технологии выполнения процессов участков. За участки принимают температурные блоки, или части здания определённой этажности и технологического назначения. Как прави-ло, неоднородные здания возводят по смешанной схеме.

Рис.8.1. Технологические схемы возведения многоэтажных каркасных зданий.

а)б)


1–3ярусы


1–9 секции


в)г)монт.кран


а ) горизонтально- восходящая схема; б) вертикально-восходящая схема;

в) смешанная схема;г) установка монтажного крана и деление на монтажные участки .

При сложной конфигурации объекта в плане монтаж ведётся несколькими кранами с произвольной (установленной в ППР) схемой разбивки на монтажные участки.

При возведении многоэтажных каркасных зданий основным является метод наращивания, заключающийся в последовательном наращивании эле-ментов здания, по вертикали снизу вверх. В качестве монтажных участков (захваток) принимается один, два или три этажа – в зависимости от констру-кции колонн. Длина захватки устанавливается в зависимости от:

- количество и технические характеристики монтажных кранов;

- сроки монтажа и количество монтажных бригад (звеньев);

- требования к срокам и технологии монтажа оборудования;

- условий соблюдения безопасных условий труда.

По технике исполнения метод наращивания разделяется на свободный и ограниченно-свободный монтаж. При свободном монтаже монтируемый элемент находится в подвешенном состоянии (на крюке крана) до тех пор, пока не будут произведены работы по выверке и временному закреплению. В этом случае средства, ограничивающие свободу перемещений по вертикали и горизонтали не используются.

Ограниченно-свободный монтаж основан на использовании вспомога-тельных систем, обеспечивающих фиксацию элементов в проектном поло-жении и существенно облегчающих процесс выверки и временного закрепле-ния. Это приводит к уменьшению сроков строительства, снижению трудовых затрат, повышению качества монтажа.

Одним из путей повышения производительности труда является приме-нение способов укрупнения элементов конструкций в плоские рамы и про-странственные блоки (совмещённо-блочный монтаж), который выполняется в непосредственной близости к месту монтажа.

8.3. Выбор монтажных кранов и технологических схем производства работ.

Выбор монтажных кранов производится на основе технических и эко-номических расчётов. При выборе технологии производства работ необходи-мо учитывать: особенности территории строительства, объёмно-планирово-чные решения, весовые и габаритные характеристики монтируемых элемен-тов, степень укрупнения конструкций.

Для монтажа сборных конструкций рекомендуется применять передви-жные башенные и стреловые краны, а при монтаже высотных зданий могут применяться приставные и самоподъёмные краны. Смешанная расстановка кранов (башенные и стреловые) применяется для зданий, у которых колонны нижних ярусов массой до 8-10т, а вышележащие до 5т. в этом случае стрело-вые краны используются для монтажа нижнего яруса здания, а возведение вышележащих этажей производится с помощью башенного крана.

В зависимости от выбранной технологии производства работ возможно расположение кранов с одной стороны объекта, с двух сторон или внутри здания. При одностороннем расположении зона действия крана распростра-няется на всю ширину здания. Грузоподъёмность крана и его габариты должны обеспечивать монтаж элементов при максимальном удалении. Такая схема требует использования более мощных кранов, что не всегдаэкономи-чески целесообразно. При использовании двух кранов, расположенных с противоположных сторон здания, вылет стрелы каждого из них должен сос-

тавлять не менее половины ширины здания. Это позволяет применять краны меньшей грузоподъёмности. Монтаж элементов должен осуществляться таким образом, чтобы зоны действия кранов не пересекались.

Выбор кранов производится по расчётным параметрам (вылет стрелы, высота подъёма крюка, грузоподъёмность), при этом учитывается вес и габа-риты элементов, строповочные средства, устройства для выверки и времен-ного крепления конструкций.

Особое внимание должно уделяться рациональному расположению подкрановых путей, зон складирования и временных подъездных путей. При складировании элементов на приобъектном складе, а также при возведении зданий с транспортных средств, площадки складирования и разгрузки должны находиться в зоне действия крана.

Элементы конструкций с большей массой складируются ближе к оси здания, а более лёгкие – на расстоянии. Необходимо предусматривать прохо-ды между штабелями сборных элементов, складировать конструкции с выпо-лнением требований, обеспечивающих их устойчивость и доступность.

Для оценки технологических схем монтажа и эффективности работы кранов принимается 2..4 варианта. Наиболее рациональным считается тот, в котором себестоимость и продолжительность монтажа являются минималь-ными.

8.4. Возведение подземной части зданий.

Цикл – возведение подземной части каркасных многоэтажных зданий включает в себя ряд строительных технологических комплексов.

1) Устройство геодезической разбивочной основы. На строительной площадке выполняется совмещённая плановая и нивелирная строи-тельная сетка, закреплённая постоянными или временными геодези-ческими знаками. По периметру и внутри здания создаются внешняя и внутренняя разбивочные сетки с закреплением основных или глав-ных осей здания в таких местах, чтобы была гарантирована их сох-ранность на весь период строительства и был обеспечен вынос в натуру осей и отметок, определяющих положение конструктивных элементов. Разбивка осей здания производится по обноске, по бров-ке и непосредственно по дну котлована. По окончании разбивочных работ составляется акт с приложением исполнительной схемы разбивки.

2) Устройство земляных сооружений (котлована, траншей) под фундаменты.

3) Устройство фундаментов . Для многоэтажных каркасных зданий в основном применяются столбчатые фундаменты, монолитные фун-даментные плиты, свайные конструкции. Столбчатые фундаменты выполняются в сборном или монолитном вариантах.

4) Строительство подвалов . Этот технологический цикл выполняется совместно с устройством фундаментов или после монтажа первого яруса колонн. Он включает в себя устройство наружных стен и пе-регородок, подпольных каналов, технических помещений, приямков лифтовых шахт, вводов коммуникаций, полов, фундаментов под оборудование, горизонтальной и вертикальной гидроизоляции.

5) Установка надфундаментных колонн (колонн 1 яруса). Эти работы относятся к «нулевому» циклу только для зданий с подвалом. В за-висимости от требований проекта устанавливаются одно-, двух- или трёх- ярусные колонны. Монтаж ведётся с применением одиночных или групповых кондукторов, системы подкосов или клиновых вкла-дышей. При установке колонн совмещаются риски нижней части колонны и фундамента и производится их временное закрепление. Для выверки колонн используются теодолиты, установленные по осям в двух взаимно перпендикулярных плоскостях. Отклонение колонн от вертикали определяется как разность отклонений их верха и низа. (Имеются и другие варианты выверки колонн).

6) Монтаж плит перекрытий. Выполняется совместно с установкой ригелей. Сопровождается сваркой и омоноличиванием узла колонна – ригель и заливкой швов между плитами цементным раствором.

7) Обратная засыпка пазух фундаментов и стен подвалов. Технологи-ческие регламенты по этой работе зависят от объёмно-планировоч-ных, конструктивных и технологических решений объекта и устана-вливаются в проекте производства работ.

Выполнение монтажных работ «нулевого» цикла осуществляется с применением самоходных стреловых кранов или кранов на рельсовом ходу (нулевиков). Краны располагаются на бровке котлована (с учётом устойчи-вости откосов) или внутри котлована (кроме кранов на рельсовом ходу).

Технологический процесс возведения подземной части осуществляется по однозахватной схеме для зданий точечного типа и многозахватной – для линейно протяжённых и зданий сложной конфигурации в плане. Разбивка на захватки позволяет применять двух-, трёх- стадийные технологии с поточны-ми методами производства работ. При многозахватных схемах используются несколъко кранов.


8.5. Возведение надземной части.

Возведение надземной части многоэтажных каркасных зданий осуще-ствляется в несколько циклов: монтаж каркаса из сборных железобетонных элементов, устройство кровель, специальные и отделочные работы, монтаж технологического оборудования.

Монтаж каркаса .

Монтаж железобетонного каркаса многоэтажных зданий из отдельных элементов ведётся методом наращивания. Последовательность и технология монтажа зависит от объёмно-планировочных и конструктивных решений и применяемого монтажного оснащения. Основным требованием при этом является обеспечение жёсткости и геометрической неизменяемости каркаса в процессе монтажа. При этом основным технологическим параметром явля-ется ячейка . В состав ячейки входят 4 колонны, 2ригеля, 2связевых плиты перекрытий, рядовые плиты перекрытий.

ПП

11К1 - 1 К


К

Р СППСПП

ППП


Ф КК

ПП(3 шт

Рис.8.2. Схема ячейки.Ф – фундаменты; К- колонны; Р – ригели; СПП – связевые плиты перекрытий; ПП – рядовые плиты перекрытий.

Конструктивно все элементы ячейки взаимосвязаны, поэтому техноло-гическая очерёдность монтажа определена: фундаменты колонныригелисвязевые плиты перекрытийрядовые плиты перекры-тий.

При организации потока, в геометрических параметрах захватки должно содержаться целое число ячеек, а высота монтажного яруса должна соответствовать разрезке колонн (её высоте).

Перед началом монтажа на каждом ярусе необходимо:

- закончить установку всех конструкций нижестоящего яруса, про-извести сварку и замоноличивание узлов, предусмотренных про-ектом;

- перенести разбивочные оси на перекрытие, оголовки колонн, опре-делить монтажный горизонт, составить исполнительную схему ра-сположения элементов смонтированного этажа (яруса).

Устройство (монтаж) фундаментов входит в «нулевой» цикл и рассмотрен выше .

Установка колонн в стаканы фундаментов производится с помощью одиночных (как правило) или групповых кондукторов.

При наличии монтажной оснастки в виде одиночных кондукторов монтаж каркаса лучше выполнять по раздельной схеме. Сначала в пределах монтажного участка устанавливают все колонны, выверяют их и закрепляют на сварке, заделывают стыки. Сдача смонтированных колонн под омоноличи-вание производится партиями по 4…10 колонн. Замоноличивание узлов и дальнейший уход за бетоном осуществляет звено бетонщиков.

После омоноличивания колонн производится монтаж ригелей и диа-фрагм жёсткости в очерёдности, установленной ППР. Узлы соединения ригелей и колонн должны быть выполнены по проекту с надёжнымисвар-ными соединениями закладных деталей между собой.

Монтаж яруса-ячейки заканчивается укладкой плит перекрытий и эле-ментов лестничных клеток. Вначале монтируются связевые (распорные) плиты между колоннами затем рядовые (основные, промежуточные). Все плиты надёжно приваривают к ригелям, а швы между элементами заде-лывают бетоном.

Если ярус двух или трёхэтажной разрезки, то применяется специальная монтажная оснастка (например комплект ЦНИИОМТП). В комплект входят: сборные железобетонные фундаментные балки, которые временно крепятся к обрезу фундамента; хомуты с подкосами раскрепляющие колонны и фунда-ментные балки; горизонтальные связи; клинья. Монтаж ригелей, плит пере-крытий, диафрагм жёсткости ведётся поэтажно

К монтажу конструкций следующего яруса приступают после дости-жения бетоном не менее 70% проектной прочности. Наиболее ответственный процесс – монтаж колонн последующих ярусов. Для этого на оголовке ниже-стоящей колонны с помощью винтов закрепляется кондуктор. Поднятую кра-ном колонну заводят в хомуты кондуктора плавно опускают на оголовок ни-жней колонны. Колонны приводят в проектное положение с помощью винтов кондуктора, обеспечивая соосность верхней и нижней колонн. Несоосность колонн не должна превышать 5мм, а отклонение их по вертикали не более 3мм.

После монтажа колонн следующего яруса повторяется процесс уста-новки остальных элементов ячейки (ригель, плиты перекрытий и др.).

При строительстве крупных объектов, когда имеется достаточно боль-шой фронт работ используются групповые кондукторы (плоские и прост-ранственные). Плоские кондукторы применяют для монтажа рам, а простран-ственные для монтажа элементов каркаса ячейки.

Одним из типов пространственных групповых кондукторов является рамно-шарнирный индикатор (РШИ).

Каркасом одноэтажных промышленных зданий называют систему связанных между собой колонн (стоек), несущих элементов покрытия, подкрановых балок и связей. В каркас включаются также фундаментные и обвязочные балки, устанавливаемые в плоскости каркасных стен.

Каркасы, многоэтажных зданий образуют так называемую прост­ранственную этажерку, состоящую из системы соединенных между собой ригелей, колонн и плит перекрытий (горизонтальных диафрагм жесткости).

Материалом для устройства каркаса служат преимущественно железобетон, реже – сталь, различные сплавы и дерево. При выборе материала каркаса руководствуются характером силовых и несиловых воздействий, воспринимаемых каркасом, а также учитывают размеры пролетов, шага колонн, высоту здания, место строительства, требования огнестойкости и технико-экономические соображения.

3.3.1. Железобетонный каркас одноэтажных зданий

В современном индустриальном строительстве применяют в основном сборные железобетонные каркасы, конструктивные элементы которых типизованы. Железобетонный каркас устраивают из сборных или монолитных элементов; наиболее экономичными и распространенными считаются сборные конструкции каркаса.

Каркас является несущей основой здания и состоит из поперечных и продольных элементов. Поперечные элементы – рамы – воспринимают нагрузки от покрытия, снега, ветра, действующего на наружные стены и фонари, а также от навесных стен. Рамы сборного железобетонного каркаса состоят из колонн и несущих конструкций покрытия – балок или ферм. Эти элементы соединяют в узлах шарнирно при помощи металлических закладных деталей, анкерных болтов и небольшого количества сварных швов. Рамы собирают из типовых элементов заводского изготовления. Продольные конструкции здания обеспечивают устойчивость поперечных рам и воспринимают продольные нагрузки от ветра, действующего на торцевые стены здания и торцы фонарей, а также нагрузки от торможения кранов. К продольным элементам относятся подстропильные конструкции и связевые элементы, располагаемые в уровне опорных частей несущих конструкций покрытий. В зданиях, оборудованных кранами, связевыми элементами в продольном направлении служат подкрановые балки.

3.3.2. Основные элементы каркаса производственных зданий и их назначение

Основные элементы каркаса зданий подразделяются на 3 группы:

1) несущие – воспринимающие основные нагрузки в здании;

2) ограждающие – предназначенные для защиты внутреннего пространства здания от атмосферных воздействий, разделения здания на помещения и сохранения заданного температурно-влажностного режима;

3) выполняющие одновременно несущие и ограждающие функции.

Промышленные здания возводят из следующих архитектурно-кон­структивных элементов (частей): фундаментов, фундаментных балок, стен, вертикальных опор (колонн), несущих элементов покрытий и перекрытий – балок, ферм, ригелей, кровли, парапетов, перегородок, фонарей, лестниц, полов, окон и дверей (рис. 3.3.).

Фундаменты представляют собой подземную конструкцию, вос­принимающую нагрузки от веса здания и оборудования и передающую их основанию.

Перекрытия разделяют внутреннее пространство на этажи, выполняют функции ограждающих и несущих конструкций, а также обеспечивают пространственную жесткость здания.

Вертикальные опоры (колонны) предназначены для поддержания покрытий и перекрытий.


Покрытие здания защищает его от атмосферных воздействий. Верхнюю гидроизоляционную оболочку покрытия называют кровлей.

Перегородки служат для разделения внутреннего пространства в пределах одного этажа на отдельные помещения. Перегородки несут только собственную массу и опираются на перекрытия нижнего этажа.

Лестницы служат для сообщения между этажами.

3.3.3. Колонны, их классификация, виды и основные типоразмеры

Конструкция сборных железобетонных колонн зависит от объемно-планировочного решения промышленного здания и наличия в нем того или иного вида подъемно-транспортного оборудования и его грузоподъемности. В связи с этим сборные железобетонные колонны подразделяют на две группы:

1) предназначенные для бескрановых цехов и цехов, оснащенных подвесным подъемно-транспортным оборудованием;

2) для цехов, оборудованных мостовыми кранами.

По конструктивному решению колонны подразделяют на одноветвевые и двухветвевые, а по местоположению в здании – на колонны крайних рядов, средние и располагаемые у торцевых стен. В тех случаях, когда бескрановое здание должно иметь высоту более 9,6 м, можно использовать колонны для зданий с мостовыми кранами. Для зданий, оборудованных мостовыми кранами грузоподъемностью до 20 т, применяют одноветвевые колонны прямоугольного сечения (рис.3.4.).



Выбор сечения колонны зависит от размеров пролета и их числа, величины шага колонн, наличия и вида подстропильных конструкций, подвесного транспорта и конструктивного решения покрытия.

Высота колонн включает в себя расстояние от уровня чистого пола до низа стропильной конструкции плюс глубину заделки в стакане фундамента.

Высота этажа промышленных зданий принята равной: 3,6; 4,8; 6,0; 7,2; 8,4; 9,6; 10,8 (через 1,2 м), 12,6; 14,4; 16,2; 18,0 (через 1,8 м).

Для зданий без мостовых кранов, имеющих высоту от пола до низа несущих конструкций покрытия до 9,6 м, применяют колонны прямоугольного сечения 400x400, 500x500 и 560x600 мм. Средние колонны имеют в верхней части со стороны боковых граней двусторонние консоли для увеличения площади опирания под несущие конструкции покрытия.

Типовые колонны запроектированы под максимальную расчетную нагрузку от полного веса покрытия со светоаэрационными фонарями, снеговой нагрузки и подвесного транспорта грузоподъемностью до 5 т, а также от покрытия и мостовых кранов грузоподъемностью до 50 т.

Колонны в зданиях с мостовыми кранами должны иметь консоль, стойку или отдельную ветвь для опирания подкрановых балок. Средние колонны имеют две подкрановые консоли, крайние выполняют с односторонним расположением подкрановой консоли. Колонны для зданий с мостовыми кранами состоят из надкрановой части (от верха колонны до подкрановых консолей) и подкрановой части (от подкрановых консолей до фундамента). Надкрановая часть (надколонник) служит для опирания несущей конструкции покрытия, а подкрановая часть передает нагрузку от надколонника и подкрановых балок, опиравшихся на консоли колонн, на фундамент. Колонны крановых зданий бывают сплошные и двухветвевые (сквозные).

Двухветвевые (сквозные) колонны применяют для зданий, обору­дованных мостовыми кранами общего назначения грузоподъемностью от 10 до 50 т, а также для бескрановых зданий с высотой этажа 10,8; 12,6; 14,4; 16,2; 18,0 м при пролетах, равных 18, 24 и 30 м. Шаг колонн для крайних рядов 6 и 12 м, для средних рядов – 12 м. Двухветвевые колонны имеют в надкрановой части сплошное прямоугольное сечение, а в подкрановой части – две ветви также прямоугольного сечения, соединенных по высоте распорками через 1,5 – 2,0 м. Высота типовых двухветвевых колонн составляет 10.8 – 18 м. Сечения крайних и средних колонн при шаге
6 м составляют 400x600 и 400х800 мм, а при шаге 12 м – 500x800 мм. При кранах грузоподъемностью до 30 т и высоте здания более 10,8 м применяют ступенчатые (для крайних рядов) и ступенчато-консольные (для средних рядов) двухветвевые колонны.

Величина заглубления колонн ниже нулевой отметки зависит от вида и высоты колонн, грузоподъемности кранового оборудования и наличия помещений или приямков, располагаемых ниже уровня пола.

Выполняют колонны обычно в виде одного цельного элемента из тяжелого бетона марки 300, армируют сварными каркасами из горячекатаной стали класса АI. Средние колонны, испытывающие действия моментов двух знаков, армируют симметрично.

Просветы между распорками ветвей колонн используют для пропуска санитарно-технических и технологических коммуникаций.

В зданиях с сильноагрессивными средами нежелательно применять двухветвевые колонны, так как они имеют сложную геометрическую форму поперечного сечения, малодоступную для осмотра и окраски мест, где могут скапливаться влага и гигроскопическая пыль. В таких случаях рекомендуется применять сплошные колонны.

3.3.4. Фундаментные и подкрановые балки

Наружные и внутренние самонесущие стены здания устанавливаются на фундаментные балки, посредством которых нагрузка передается на фундаменты колонн каркаса. Фундаментные балки укладывают на специальные бетонные столбики, устанавливаемые на обрезы фундаментов. Балки укладывают под наружные стены вплотную к наружным граням колонн, под внутренние стены – между колоннами.

Фундаментные балки при шаге колонн 6 м применяются сборные железобетонные из бетона марок 300 – 350, при шаге колонн 12 м – с предварительно напряженной арматурой. Сечение фундаментных балок может быть тавровым, трапециевидным или прямоугольным. Основные фундаментные балки изготовляют высотой 450 мм (для шага колонн 6 м) и
600 мм (для шага колонн 12 м), а шириной 260, 300, 400 и 520 мм. Эти размеры соответствуют наиболее распространенной в промышленных зданиях толщине наружных стен. В местах устройства температурных швов укладывают балки, укороченные на 500 мм.

Для защиты пристенной полосы пола от промерзания и предотвращения деформации балок на пучинистых грунтах их снизу и с боков засыпают шлаком. Верхнюю грань фундаментной балки размешают на
30 – 50 мм ниже уровня чистого пола, который в свою очередь располагают на 150 мм выше отметки грунта. Поверх фундаментных балок укладывают гидроизоляцию из цементно-песчаного раствора или двух слоев рулонного материала на битумной мастике. На поверхности земли вдоль фундаментных балок по всему периметру здания устраивают асфальтобетонную отмостку для предотвращения подмокания фундаментов под наружные стены от атмосферных осадков.

Подкрановые балки предназначены для опирания рельсов мостовых кранов и обеспечения продольной пространственной жесткости каркаса здания.

Железобетонные подкрановые балки могут быть таврово-трапециевидного или двутаврового сечения; их применяют под краны легкого и среднего режима работы при шаге колонн 6 и 12 м и грузоподъемности кранов до 30 т. В торцах здания на подкрановых балках устанавливают упоры для мостовых кранов.

3.3.5. Железобетонный каркас многоэтажных промышленных зданий

Элементы каркаса многоэтажных промышленных зданий должны обладать высокой прочностью, устойчивостью, долговечностью и огнестойкостью. Поэтому для этих зданий применяют железобетонные конструкции, которые могут быть монолитными, сборными или сборно-монолитными.

Стальной каркас применяют при больших нагрузках, при наличии динамических воздействий на несущие конструкции от работы оборудования или при строительстве зданий в труднодоступной местности.

Положительным качеством многоэтажных зданий является их компактность, в связи с чем заметно сокращается протяженность различных инженерных и транспортных коммуникаций. В многоэтажных зданиях размещают производства, в которых технологический процесс организуется по вертикали. В этом случае материалы поднимают на верхний этаж, откуда они самотеком перемещаются на нижележащие этажи для переработки. Так, например, на предприятиях пищевой, фармацевтической и химической промышленности многие цехи оборудуют вертикально расположенной аппаратурой большой высоты, и жидкие материалы перерабатываются при транспортировании их самотеком. Здесь также целесообразно применять многоэтажные здания или этажерки.

Этажерки представляют собой многоярусные сооружения без ог­раждающих конструкций и покрытия. На них размещают такое техноло­гическое оборудование, на которое атмосферные влияния не оказывают вредного воздействия.

Преобладающей конструктивной схемой многоэтажных зданий является каркасная с навесными стенами. Здания с несущими стенами и внутренним каркасом применяются в последние годы сравнительно редко.

Многоэтажные каркасные здания сооружают по рамной схеме с жесткими узлами. Каркас состоит из вертикальных стоек (колонн), соединенных жестко с балками (ригелями) междуэтажных перекрытий и покрытий. В совокупности они образуют поперечную многоярусную раму, жестко защемленную в фундаментах. В продольном направлении поперечные рамы связывают настилом перекрытий и покрытий, образующих жесткие диафрагмы. Продольная жесткость обеспечивается также дополнительными стальными связями, которые размешают посредине каждого температурного блока.

Высота этажей может быть 3,6; 4,8; 6,0; 7,2 и 10,8 м. Высоту,7,2 м применяют для первого и верхнего этажей, высоту 10,8 м – только для верхнего. Высота этажа считается между отметками чистого пола; высоту верхнего этажа при укрупненном пролете замеряют от уровня чистого пола этого этажа до низа строительной конструкции.

Для сооружения многоэтажных зданий применяют типовые сборные железобетонные колонны двух типов – крайние и средние. Для опирания ригелей у колонн предусмотрены консоли. По высоте колонны могут быть двухэтажной разрезки высотой на два этажа и поэтажной – высотой на один этаж (рис. 3.5.).

Для двух нижних этажей, как правило, применяют колонны только двухэтажной разрезки. Для третьего и четвертого этажей – высотой 3,6 м и 4,8 м – устанавливают колонны тоже двухэтажной разрезки. Колонны поэтажной разрезки используют при высоте третьего этажа и выше, равной 6 м.

На консоли многоэтажных зданий опираются ригели (балки) междуэтажных перекрытий и покрытия. Размер между консолями принимают равным высоте этажа. Расстояние от консоли до верхнего конца колонны равно 1780 мм у колонн средних этажей и 720 мм у колонн верхнего этажа. Таким образом, стыковку колонн производят на высоте 1,0 или 0,6 м от плоскости плит перекрытия, в зависимости от типа железобетонного ригеля. Это обеспечивает удобство производства работ при монтаже. Такое расположение стыка объясняется также наименьшими усилиями, возникающими в месте стыка, в стойке каркаса при эксплуатации здания.




Сечение колонн – прямоугольное 600x400 или 400x400 мм, причем у колонн нижних этажей сечение составляет 600x400 мм. Переход на сечение 400x400 мм обычно происходит на уровне верхней плоскости консоли второго этажа.

Ригели (балки междуэтажных перекрытий) изготавливают двух типов:

а) тип I – для опирания плит на полки;

б) тип II – для опирания плит на верхнюю плоскость ригеля.

Ригели типа II отличаются от ригелей типа I формой поперечного сечения. Они имеют прямоугольную форму высотой 800 и шириной 300 мм. Длина ригелей зависит от их расположения в здании (крайние, средние), а также от расположения по этажам, что связано с сечением колонн, и составляет 5000; 5300; 5500 для 6-метрового пролета и 8000; 8300; 8500 мм для 9-метрового пролета.

Для крепления ригелей по концам их в верхней части имеются выемки с выпусками стержней арматуры, которые сваривают с арматурой колонн, после чего стык замоноличивают бетоном М 100-150 на мелком щебне. Ригели для пролетов 6 м изготавливают из бетона М 200 без предварительного напряжения арматуры. Ригели для 9-метровых пролетов изготавливают с предварительным напряжением нижних стержней арматуры. Междуэтажные перекрытия в многоэтажных промышленных зданиях, как правило, делают сборными. Они состоят из ригелей и железобетонных ребристых плит.

Плиты подразделяют на две группы в зависимости от типа ригеля. Для опирания плит на полки ригелей типа I предусмотрено два типоразмера плит:

а) основные плиты, имеющие ребристую коробчатую конструкцию длиной 5500 и 5050 мм и шириной 1500 мм, а также укороченные плиты длиной 5050 мм, которые укладывают в торцах здания и в местах устройства деформационных швов;

б) доборные плиты, укладываемые у продольных стен и имеющие такую же длину, что и основные, шириной 740 мм и высотой 400 мм.

При использовании ригелей II. типа плиты укладывают по их верху. Плиты II типа имеют один типоразмер: 5950x1490 мм; в качестве доборной применяют плиту I типа. Эти плиты имеют также коробчатую конструкцию. Межколонные плиты, имеющие в торцах вырезы для колонны, служат распорками, передающими горизонтальные продольные нагрузки на каркас здания их укладывают поверх ригелей.

В случае устройства каркаса многоэтажного здания (или этажерки), для легкого оборудования или вспомогательных помещений строят здания с безбалочными (сборными железобетонными) перекрытиями, имеющими ряд преимуществ, таких как возможность создания гладких потолков, не имеющих ребер, что способствует лучшему проветриванию и препятствует застою воздуха, это особенно важно для помещений с взрывоопасными выделениями и необходимостью обеспечения высокой степени гигиеничности. Кроме того, помещения с гладкими потолками лучше освещаются.

В таких перекрытиях на колонны с консолями надевают квадратные в плане капители, служащие опорами надколонным панелям. Эти панели образуют замкнутый контур, на который и опираются пролетные панели, имеющие квадратную форму.

3.3.6. Условия применения стальных конструкций для каркасов одноэтажных промышленных зданий

Применение стальных конструкций для каркасов промышленных зданий в соответствии с "Техническими правилами по экономному расходованию основных строительных материалов" (ТП 101-81) допускается только в приведенных ниже случаях.

а) Для стропильных и подстропильных конструкций:

· в отапливаемых зданиях с пролетами 30 м и более;

· в неотапливаемых зданиях и навесах различного назначения с асбестоцементной кровлей с пролетами до 12 м включительно при грузоподъемности подвесного подъемно-транспортного оборудования более 2 т, с пролетом 18 м при грузоподъемности подвесного подъемно-транспортного оборудования более 3,2 т;

· в зданиях и навесах пролетом 24 м и более;

· в неотапливаемых однопролетных зданиях с рулонной кровлей с пролетами 30 м и более;

· в многопролетных зданиях с пролетами 18 м и более;

· в зданиях с подвесным подъемно-транспортным оборудованием грузоподъемностью более 5 т либо другими подвесными устройствами, создающими нагрузки, превышающие предусмотренные для типовых железобетонных конструкций;

· в зданиях на участках с развитой сетью подвесного конвейерного транспорта;

· в зданиях с расчетной сейсмичностью 8 баллов с пролетами 24 м и более;

· в зданиях с расчетной сейсмичностью 9 баллов с пролетами 18 м и более, а также в случаях:

· возведения зданий в труднодоступных районах строительства;

· в зданиях с большими динамическими нагрузками (копровые цехи, взрывные отделения и др.);

· над горячими участками цехов с интенсивным теплоизлучением при температуре нагрева поверхности конструкций более 100 °С (холодильники прокатных цехов, отделения нагревательных колодцев, печные и разливочные пролеты и т.п.).

б) Колонны:

· в зданиях при высоте их от пола до низа стропильных конструкций более 18 м;

· при наличии мостовых кранов общего назначения грузоподъемностью 50 т и более независимо от высоты колонн, а также при меньшей грузоподъемности кранов тяжелого режима работы;

· при шаге колонн более 12 м;

· при двухъярусном расположении мостовых кранов.

в) Для подкрановых балок, светоаэрационных фонарей, ригелей и стоек фахверка.

г) Для типовых легких несущих и ограждающих конструкций комплексной поставки.

Применение стальных конструкций для каркасов одноэтажных производственных зданий при использовании новых эффективных утеплителей по сравнению с аналогичными традиционными конструкциями из железобетона и обычных теплоизоляционных материалов позволяет значительно снизить массу (вес) здания в целом.

Стальной каркас промышленного здания имеет конструктивную схему, аналогичную железобетонному каркасу.

Стальные колонны и их виды

Стальные колонны в зависимости от их поперечного сечения подразделяют на следующие:

а) сплошные:

– постоянного;

– переменного сечения;

б) решетчатые (сквозные) переменного сечения;

в) раздельные переменного сечения.

Колонны устраивают для бескрановых зданий и для зданий, обо­рудованных кранами. Колонны воспринимают совместно нагрузки от покрытия и кранов; при большой грузоподъемности кранов колонны раздельно воспринимают нагрузки от покрытия и от кранов. Соединения элементов колонн выполняют сварными, а при особо тяжелых крановых нагрузках – клепаными.



В поперечном сечении стальные колонны чаще всего представляют собой комбинацию нескольких прокатных профилей (швеллеров, двутавров, уголков, стальных листов), связанных накладками. Подкрановые балки опирают на колонны постоянного сечения через специально устраиваемые для этой цели консоли, а в ступенчатых – на уступы колонн (рис.3.6.).

Сплошные колонны по сравнению со сквозными менее трудоемки в изготовлении, но требуют большего расхода стали. Их применяют в бескрановых зданиях, а также в цехах с мостовыми кранами грузоподъемностью до 20 т. В остальных случаях применяют колонны переменного сечения, при этом надколонники могут быть сплошными или сквозными. Нижнюю подкрановую часть колонн при ширине ее до 800 мм делают сплошной, а в остальных случаях сквозной. Колонны раздельного типа в некоторых случаях бывают самыми экономичными, так как разделение передаваемых нагрузок от покрытия и кранов на две ветви дает наиболее полное использование материала. Сплошные колонны чаше всего выполняют из одного прокатного профиля или нескольких вертикальных листов, сваренных между собой по всей высоте колонны. Сквозные колонны состоят из нескольких отдельных ветвей, которые соединяют между собой решетками.

Нагрузку от колонн на фундаменты передают через башмаки, размеры которых определяют по расчету в зависимости от величины передаваемых нагрузок; башмаки располагают на 500 – 800 мм ниже уровня пола. Во избежание коррозии башмаки обетонивают.

Фундаментные балки при стальных каркасах выполняют железобетонными.

Стальные подкрановые балки

Стальные подкрановые балки могут быть разрезными и неразрезными, сплошными и решетчатыми . Наибольшее распространение получили разрезные подкрановые балки – из-за простоты конструктивного решения и индустриальности, хотя неразрезные подкрановые балки имеют лучшие условия эксплуатации подкрановых путей.

Решетчатые подкрановые балки следует применять при пролетах 12 м и более при использовании кранового оборудования легкого и среднего режимов работы с грузоподъемностью, не превышающей 50 т. Во всех остальных случаях применяют сплошные подкрановые балки.

Для восприятий горизонтальных сил от торможения тележки и перекосов крана, а также обеспечения общей устойчивости подкрановых балок необходимо предусматривать установку тормозных балок или ферм, которые крепятся сваркой к верхним поясам подкрановых балок. Ширина тормозных балок и ферм назначается с учетом необходимой жесткости и возможности прохода по подкрановым путям. При высоте подкрановых балок более 1200 мм необходимо дополнительно вводить диафрагмы.

Стальные несущие конструкции покрытий: балки, фермы, рамы и арки

В качестве стальных несущих конструкций покрытия применяют прокатные или составные балки, фермы, арки, пространственные и висячие системы.

Стальные прокатные и составные балки имеют чаше всего двутавровое сечение, их используют при пролетах 6 – 12 м.

Стальные фермы, применяемые в практике строительства, имеют различные типы, форму и очертания, выбор которых зависит от назначения и объемно-планировочного решения промышленного здания. Геометрические схемы типовых унифицированных стальных ферм приведены на рис.3.7.

Наиболее часто применяют фермы сегментные, параболические, с параллельными поясами, полигональные, треугольные, с параллельными поясами с затяжкой и др. Фермы с параллельными поясами предназначены для зданий с плоским покрытием, а также для устройства подстропильных конструкций; их пролет может достигать 60 м и более. Полигональные фермы используют для устройства покрытий с рулонной кровлей при пролетах до 36 м. Треугольные фермы дают возможность осуществить покрытия с крутыми кровлями из асбестоцементных или стальных листов, вследствие чего высота ферм в середине пролета достигает значительных размеров; это ограничивает перекрываемые ими пролеты до 36 – 48 м. В массовом промышленном строительстве применяют унифицированные полигональные фермы пролетом 24, 30 и 36 м с уклоном верхнего пояса 1:8 и высотой в опорном узле 2200 мм, плоские с параллельными поясами пролетом 24, 30 и 36 м и высотой в опорном узле 2550, 3750 и 3750 мм соответственно и уклоном верхнего пояса 1,5 %, по которым устраивают рулонные кровли. В отдельных случаях фермы такого типа применяют для перекрытия 18-метровых пролетов. Фермы с крутыми скатами используют для пролетов 18, 24, 30 и 36 м при кровлях из листовых материалов; их высота

на опорах принята 0,45 м, а в средней части 3000, 3860, 4730 и 5560 мм соответственно. Большепролетные фермы могут перекрывать пролеты до 90 м и иметь различные схемы решеток: треугольную, раскосную, крестовую и другие, выбор которых зависит от характера приложения нагрузки и высоты фермы.

В подавляющем большинстве случаев фермы имеют неподвижные опоры, однако в температурном шве на одной колонне (а не на спаренных колоннах) одну из колонн устанавливают на катках или сферических поверхностях.

Стальные рамы, предназначенные для устройства несущих конструкций покрытий при больших пролетах, выполняют одно- или многопролетными, с горизонтальными или ломаными поясами. Рамные конструкции эффективны при жесткости колонн, близкой к жесткости ригелей, высоту которых принимают: при сплошных сечениях 1/20 – 1/30 пролета, при решетчатых – 1/12 – 1/18 пролета.

Стальные арки применяют в промышленных зданиях для устройства покрытий со значительными – от 50 до 200 м – размерами пролетов. Распор арок передают через фундаменты на грунт; стрела подъема арок находится в пределах 1/2 – 1/15 пролета. Арки, как и рамы, могут иметь сплошное или сквозное сечение; высота сечения сквозных арок составляет 1/30 – 1/60 пролета и 1/50 – 1/80 сплошных арок.

Связи

Пространственную жесткость и устойчивость ферм, арок, рам и других плоскостных конструкций каркасов зданий обеспечивают системой связей, устанавливаемых между этими конструкциями.

В покрытиях устраивают горизонтальные (продольные и поперечные) и вертикальные связи, а между колоннами – продольные вертикальные связи.

Продольные горизонтальные связи располагают вдоль рядов колонн в плоскостях нижнего и верхнего поясов крайних панелей ферм. Они представляют собой продольные связевые фермы с параллельными поясами. Поперечные горизонтальные связи образуют поясами двух смежных стропильных ферм и расположенной между ними решеткой. Их устраивают у торцов здания, а также с обеих сторон каждого деформационного шва, а при большом расстоянии между деформационными швами – через каждые 60 м.

3.3.7. Железобетонные несущие конструкции покрытия, их виды и типы

Несущие конструкции покрытий промышленных зданий подразделяют на стропильные, подстропильные и несущие элементы ограждающей части покрытия. В промышленных зданиях применяют два типа стропильных несущих конструкций:

1) плоскостные – балки, фермы, арки и рамы;

2) пространственные – оболочки, складки, купола, своды и висячие системы.

В качестве подстропильных конструкций промышленных зданий широко используют балки и фермы, а в качестве несущих конструкций ограждающей части покрытия – крупноразмерные плиты. Соответственно унифицированным размерам объемно-планировочных элементов промышленных зданий величину поперечных пролетов и продольного шага несущих конструкций назначают кратной укрупненному модулю 6 м; в отдельных случаях допускается применение модуля 3 м.

Железобетонные балки применяют для устройства покрытий в промышленных зданиях, пролетами 6, 9, 12, 18 и в отдельных случаях 24 м. Необходимость балочных покрытий при пролетах 6, 9 и 12 м (пролеты таких размеров можно перекрыть и плитами) возникает в случае подвески к несущим конструкциям подъемно-транспортного оборудования. Железобетонные балки могут быть односкатными, двухскатными и с параллельными поясами (рис.3.8.).

Односкатные балки применяют в зданиях с шагом колонн 6 м и в зданиях с наружным водоотводом пролетами 6 и 9 м. Сечение балок тавровое, в опорных узлах имеются вертикальные ребра жесткости. Уклон верх-


него пояса односкатных балок пролетом 6 м составляет 1:10, пролетом 9 м – 1:15, пролетом 12 м – 1:20. Высота балок в опорном узле – 600 (для пролета 6 м) и 800 мм (для пролета 9 м). Для устройства скатных покрытий зданий пролетом 12 м применяют предварительно напряженные односкатные балки с высотой в опорном узле 1200 мм. Такие балки рассчитаны на подвесной транспорт в виде двух кран-балок грузоподъемностью по 1,5 т каждая и нагрузку от покрытия в пределах 350 ÷ 550 кг/м 2 ; сечение балок двутавровое.

Двускатные балки используют для устройства ломаных покрытий в зданиях пролетами 6, 9, 12 и 18 м. Балки пролетом 6 и 9 м имеют тавровое сечение и вертикальные ребра жесткости в опорных узлах. Высота в опорном узле 6-метровых балок составляет 400 мм, 9-метровых – 600 мм. Балки пролетом 6, 9, 12 м устанавливают только с шагом 6 м, а балки пролетом 18 м – с шагом 6 и 12 м. Сечение балок – двутавровое. Высота в средней части 12-метровой балки равна 1290 мм, 18-метровой – 1540 мм, высота в опорных узлах – 800 мм. Уклон верхнего пояса двухскатных балок 1:20.

Балки с параллельными поясами применяют для зданий с плоскими покрытиями и пролетами 12, 18 и 24 м. Сечение балок двутавровое, высота 1200 мм. В целях уменьшения массы балок в их вертикальной стенке устраивают сквозные отверстия для прокладки различных внутрицеховых коммуникаций, что позволяет более рационально использовать внутреннее пространство помещений.

Подстропильные балки предназначены в качестве опор для стропильных балок при шаге колонн 12м в зданиях с плоскими или скатными покрытиями. Длина балок соответствует пролету 12 м, высота их составляет 500 мм, сечение тавровое с полкой внизу.

Фермы, их виды

Железобетонные фермы применяют при пролетах 18, 24 и 30 м и шаге 6 и 12 м. При пролетах 36 м и больше используют, как правило, стальные фермы. Применение 18-метровых ферм целесообразно в том случае, когда в пределах покрытия необходимо разместить коммуникационные трубопроводы или использовать межферменное пространство для устройства технических этажей.

Различают следующие основные типы ферм:

а) сегментные, с верхним поясом ломаного очертания и прямолинейными участками между узлами;

б) арочные раскосные с редкой решеткой и верхним поясом плавного криволинейного очертания;

в) арочные безраскосные;

г) полигональные с параллельными поясами или трапециевидным очертанием верхнего пояса;

д) полигональные с ломаным нижним поясом.

Высоту ферм всех типов в середине пролета принимают равной
1/7 – 1/9 длины пролета. Выполняют фермы из бетонов высоких классов (В30 – В50) и армируют нижний пояс и растянутые раскосы предварительно напряженной арматурой класса AIV с натяжением на упоры. Ширину сечения поясов ферм при их шаге 6 м принимают 200 – 250 мм, а при шаге 12 м – 300 – 350 мм (рис.3.9.).

В современной практике промышленного строительства наибольшее распространение получили сегментные стропильные фермы. Их применяют для устройства скатных покрытий с фонарями или без них. Эти фермы применяют для перекрытия пролетов 18, 24 и 30 м. Сечения верхнего и нижнего поясов – прямоугольные одинаковой ширины. Фермы устанавливают на железобетонные колонны при шаге колонн 6 м или на подстропильные фермы при шаге колонн 12 м.

Фермы с параллельными поясами используют для устройства плоских покрытий зданий без фонарей. Длина ферм рассчитана на пролеты 18 и 24 м. Фермы, устанавливаемые через 6 м, рассчитаны на подвесной транспорт грузоподъемностью до 5 т.


Подстропильные конструкции

Подстропильные конструкции в виде железобетонных ферм и балок применяют в покрытиях одноэтажных промышленных зданий при шаге колонн 12 и 18 м и с пролетами, равными 18, 24 и 30 м для опирания на них стропильных конструкций, устанавливаемых с шагом 6 м, в случаях, когда технологический процесс требует широкого шага опор.

Подстропильные конструкции выполняют предварительно напряженными из бетона классов В30-В40 и армируют канатами класса К-7,
К-10, стержневой класса А1У или проволочной арматурой Вр-11 с натяжением на упоры.

Железобетонные подстропильные конструкции устраивают в виде балок высотой 1500 мм и ферм высотой 2200 и 3300 мм.

3.3.8. Несущие элементы ограждающей части покрытия

При плоских и скатных несущих конструкциях несущие элементы ограждающей части покрытий выполняются прогонными – с применением прогонов, по которым укладывают мелкоразмерные плиты, или беспрогонными – в виде крупноразмерных плит.

Настил беспрогонных покрытий промышленных зданий обычно устраивают из предварительно напряженных ребристых железобетонных плит размерами 3x12, 1,5x12, 3х6 и 1,5x6 м, а также из легкого армированного бетона размером 1,5x6 м. Плиты укладывают по верхнему поясу стропильных конструкций (балок или ферм) и приваривают к нему. Стыки между плитами замоноличивают цементным раствором или бетоном, и настил работает как единая жесткая диафрагма на восприятие горизонтальных и вертикальных нагрузок.

Основными плитами считаются плиты шириной 3 м, доборными – шириной 1,5 м, которые применяются в местах с большой нагрузкой на покрытие.

Наибольшее распространение получили ребристые плиты, выполняемые из тяжелого железобетона.

Плиты покрытий из легких и ячеистых бетонов, совмещающие функции настила и утеплителя, применяют для устройства теплых покрытий в зданиях с шагом несущих конструкций 6 м. Плиты изготавливают из керамзитобетона, из автоклавного армированного ячеистого бетона (пенобетона или пеносиликата с объемной массой от 700 до 1000 кг/м 2).

Основные плиты из легких бетонов имеют длину 6 м и ширину
1,5 м, доборные плиты – ширину 0,5 м при толщине 200, 240 мм. Опирание всех типов крупноразмерных плит на несущие конструкции осуществляют через стальные закладные детали, приваривая их к закладным деталям верхнего пояса несущих конструкций покрытия.

3.3.9. Легкосбрасываемые покрытия

Легкосбрасываемые покрытия устраивают на зданиях категорий А и Б (по пожарной опасности). Такие покрытия легко сбрасываются под действием повышенного давления в результате возможного взрыва газов или пыли; стены зданий и основные несущие конструкции в этом случае не разрушаются. Суммарная площадь легкосбрасываемых участков покрытия стен, а также окон и дверей должна быть не менее 0,05 м 2 на 1 м 3 взрывоопасного помещения.

Настил легкосбрасываемого покрытия делают из железобетонных специальных плит и асбоцементных волнистых листов.

Железобетонные плиты имеют длину 6 м, ширину 3 или 1,5, высоту 300 мм. Плиты имеют коробчатую форму с поперечными ребрами жесткости и отверстиями. Плиты шириной 3 м укладывают как обычные и прикрепляют к несущим конструкциям покрытия, а плиты шириной 1,5 м размешают с интервалами.

На железобетонные плиты настилают волнистые асбоцементные листы усиленного профиля. Плитный утеплитель укладывают по асбестоцементным листам, впадины заполняют насыпным утеплителем. По верху утеплителя делают выравнивающий слой, по которому расстилают рулонную кровлю.


©2015-2017 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.


Top