Что такое термометр? Значение слова. Что такое термическое сопротивление

θέρμη «тепло» + μετρέω «измеряю») - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:
  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

История изобретения

Изобретателем термометра принято считать Галилея : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани , засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону , Роберту Фладду , Санториусу , Скарпи, Корнелиусу Дреббелю , Порте и Саломону де Коссу , писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла .

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C - 100Ω) PT1000 (сопротивление при 0 °C - 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 - +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 (T − 100) ] (− 200 ∘ C < T < 0 ∘ C) , {\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C} R T = R 0 [ 1 + A T + B T 2 ] (0 ∘ C ≤ T < 850 ∘ C) . {\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C}).}

Отсюда, R T {\displaystyle R_{T}} сопротивление при T °C, R 0 {\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 × 10 − 3 ∘ C − 1 {\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}} B = − 5.775 × 10 − 7 ∘ C − 2 {\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}} C = − 4.183 × 10 − 12 ∘ C − 4 . {\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости , спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В 2014 году Россия подписала к 2030 году Россия откажется от производства ртутных термометров.

Помнишь ли ты, маленький друг, свое состояние, когда приходилось болеть? Неприятная штука! Мама волнуется, укладывает тебя в постель и сразу начинает искать термометр, чтобы измерить температуру.

Что же это за прибор такой – ТЕРМОМЕТР?

Слово термометр пришло к нам из Греции. Состоит оно из двух греческих слов – «теплота» и «меряю». То есть, термометр – это прибор для того, чтобы мерять тепло. Иногда его еще называют градусником, от слова «градус». Ведь температура всегда измеряется в градусах.

Первый термометр изобрели очень давно, четыреста лет назад! Тебя тогда еще не было на свете, не было даже твоих родителей. Придумал его итальянский ученый Галилео Галилей для своих опытов по физике. И это была простая стеклянная трубочка без шкалы с цифрами. Было не очень удобно пользоваться таким прибором, потому что он не показывал точную температуру.

Какие бывают термометры

Термометры бывают разные. Но все они устроены одинаково: небольшая шкала с цифровыми делениями и тонюсенькая трубочка с ртутью или подкрашенным спиртом.

Внутри ртутного градусника, в тонкой трубочке находится специальный жидкий металл – ртуть. Когда прибор попадает тебе подмышку, ртуть быстро нагревается, начинает скользить вверх по трубочке и останавливается ровно на отметке, которая соответствует твоей температуре.

Температура тела здорового мальчика – тридцать шесть и шесть десятых градуса (36,6). Посмотри на шкалу термометра, если твоя температура выше или ниже этого показателя – ты действительно не здоров.

Внимание! Ртуть – очень ядовитый металл!

Поэтому обращайся с таким термометром очень аккуратно, чтобы не разбить:

  1. Держи ртутный термометр в специальном жестком чехле из пластмассы.
  2. Ни в коем случае не давай такой градусник младшим братьям и сестрам.
  3. Если термометр все же разбился, быстрее выйди из комнаты и сообщи родителям о беде. Они точно знают, что нужно сделать.
  • Электронный термометр – прибор самый современный, умный и самый точный.

Электронный термометр работает от маленькой батарейки и не содержит ртути. А поэтому – он самый безопасный. При необходимости папа может батарейку быстро заменить или сделать это в любой мастерской по ремонту часов.

Ты спросишь, зачем нужен электронный градусник, если уже есть ртутный? На самом деле, электронный термометр показывает более точную температуру. И к тому же делает это очень быстро, всего за 10 секунд! Ты даже не успеешь оглянуться, а твоя температура уже отразится на небольшом дисплее приборчика.

Кроме того, электронный термометр умеет запоминать результат последнего измерения температуры. Это очень удобно, если ты действительно заболел и приходится мерять температуру несколько раз в день.

И даже если мама отошла от тебя на минутку, электронный градусник подаст громкий сигнал, когда температура будет измерена.


Наверняка в твоем доме есть не один спиртовой градусник. Посмотри внимательно – один из них измеряет температуру воздуха в квартире, другой показывает, хорошо ли морозит холодильник, третий плавает вместе с тобой в воде, когда ты принимаешь ванну.

В настоящее время трудно найти человека, который не слышал о таких приспособлениях как термометр, лабораторные весы или песочные часы и не смог бы объяснять, для чего они предназначены.

Если раньше широко употребляемым было слово градусник, которое ассоциировалось только с ртутным термометром, то в настоящее время рынок лабораторного оборудования и измерительных приборов настолько расширился, что к слову термометр присоединяют еще одно слово, определяющее его тип или принцип действия: молочный, технический, керосиновый, для воды, оконный, газовый, оптический, инфракрасный, термополоски. Разнообразие данного изделия можно найти практически в любой аптеке, но разобраться в них и выбрать наиболее подходящий достаточно непросто, так как каждая модель наряду со своими преимуществами обладает и рядом недостатков.

Определение и применение

– это прибор для измерения температуры тела, воды, почвы, воздуха и др.. Принцип действия основан на свойстве жидкости расширятся под действием тепла. В связи с тем, что прибор измерения температуры неприхотлив в использовании, он часто применяется как в технической области и лабораторной практике, так и в быту. На сегодняшний день существует большое количество разновидностей такого измерительного оборудования, отличающиеся по способу действия, но главной их задачей является измерение температуры.

Возникновение термометра

Многие ученые трудились над изобретением термометра. Однако основы современного измерения температуры заложил в 1592 г. Галилео Галилей. Конструкция его прибора была очень проста. Термоскоп-термометр показывал только изменение степени нагретости тела. А отсутствие шкалы делало его несовершенным из-за невозможности определить точное температурное значение. В начале XVIII века немецкий ученый Фаренгейт впервые изобрел современный измерительный прибор – ртутный термометр со стандартной шкалой. Позже Цельсий установил константы точки тающего льда и кипящей воды.

Виды термометров

Современный рынок лабораторного оборудования и приборов настолько велик, что перечислить и разобраться в них не так уж просто. Однако такое разнообразие помогает найти наиболее подходящий вариант термометра:

Жидкостный – самый распространенный вид, основанный на тепловом расширении химических реактивов (ртути, керосина, этилового спирта, пентана, толуола и т. д.). По сравнению с другими термометрами, ртутный имеет больше преимуществ, благодаря достоинствам используемого химического вещества. Он точно определяет температуру тела, долговечен, легко стерилизуется и имеет невысокую стоимость. (наиболее частое название) обладает наибольшей точностью определения температуры, погрешность которого составляет около 0,1 °C. Однако хрупкое лабораторное стекло и ядовитая начинка представляют опасность для человека при его неосторожном использовании;

Механический – аналогичен жидкостному по принципу действия и применяется для автоматического регулирования температуры и электрической сигнализации;

Электронный или цифровой – сконструирован на основе встроенного датчика, где данные выводятся на дисплей. Кром того, в таких моделях могут быть предусмотрены такие функции, как хранение в памяти последних результатов, подсветка, звуковые сигналы, сменная шкала «Цельсий-Фарентейт». Однако такой прибор имеет ряд серьезных недостатков: невозможность стерилизовать, высокая степень погрешности и немалая стоимость;

Инфракрасный (пирометр) представляет собой достаточно новую разновидность данного прибора. Измерения осуществляются благодаря наличию чувствительного элемента, способного считать данные инфракрасного излучения тела, результаты которого выводятся на дисплей. Определение температуры такими градусниками происходит в течение 2-15 секунд. Отсутствие непосредственного контакта с человеком – наибольшее преимущество данного вида, так как это позволяет измерять температуру в нестабильных ситуациях (спящим больным, капризным детям и т.д.).

Где купить качественные измерительные приборы для различных предназначений?

Термометр, как один из наиболее часто используемых приборов, следует покупать в аптеке или специализированном магазине, в таком, как например: online магазин химических реактивов Москва розница и опт «Прайм Кемикалс Групп». Он специализируется на продаже химических реактивов, лабораторного оборудования и приборов , лабораторной посуды из стекла и других материалов. Весь товар сертифицирован и соответствует ГОСТ стандартам. На нашем сайте можно купить весы лабораторные, аналитические весы, весы электронные лабораторные, термометр и ареометр цена которых самая приемлемая на современном фармацевтическом рынке.

“Prime Chemicals Group” – надежное оснащение европейского качества!

Ноль в шкале исчислений Фарадея был равен современным 32 градусам, а температура человеческого тела равнялась 96 градусам. В 1742 году физик Цельсий сделал точками отсчета температуру таяния льда и кипения воды, правда изначально ноль на шкале соответствовал температуре кипения воды, но потом она вид.

Жидкостные термометры работают на основе принципа изменения начального объема жидкости, залитой в термометр, при изменении окружающей температуры. Чаще всего в колбу термометра заливают спирт или ртуть. Плюсами ртутного термометра являются высокая точность измерения температуры, длительный срок использования, однако уровень температуры устанавливается достаточно долго, ртуть в градуснике является опасным материалом, поэтому использование ртутного термометра необходимо производить максимально аккуратно.
Оптические термометры регистрируют температуру по уровню свечения, спектра и иных показателей и чаще всего применяются в научных исследованиях.

Механические термометры действуют по принципу жидкостных, только датчиком служит спираль, или лента из металла.
Электрические - работают по принципу изменения уровня сопротивления проводника при изменении внешней температуры. Те электротермометры, которые имеют большой диапазон, основаны на термопарах - при взаимодействии разных металлов возникает контактная разность потенциалов, которая зависит от температуры. В электротермометры встроены дополнительные функции памяти, подсветки, они безопасны и быстро показывают результат, однако могут давать небольшую погрешность, вследствие чего температуру нужно мерить несколько раз.

Инфракрасный термометр измеряет температуру без непосредственного взаимодействия с человеком или предметом, отличается точностью измерения и безопасностью, а также высокой скоростью действия - полсекунды. Они гигиеничны, быстро (в течение 2-5 секунд) работают и помогают измерять температуру детям.

Видео по теме

Известно, что более нагретые тела хуже проводят электрический ток, чем охлажденные. Причина этому – так называемое термическое сопротивление металлов.

Что такое термическое сопротивление

Термическое сопротивление – это сопротивление проводника (участка цепи), обусловленное тепловым движением носителей заряда. Под зарядами здесь надо понимать электроны и ионы, содержащиеся в веществе. Из названия понятно, что речь идет об электрическом явлении сопротивления.

Суть термосопротивления

Физическая сущность термосопротивления заключается в зависимости подвижности электронов от температуры вещества (проводника). Разберемся, откуда такая закономерность.

Проводимость в металлах обеспечивается свободными электронами, которые под действием электрического поля приобретают направленное движение вдоль линий электрического поля. Таким образом, резонно задаться вопросом: что может препятствовать движению электронов? Металл содержит в себе ионную кристаллическую решетку, которая, безусловно, замедляет перенос зарядов с одного конца проводника на другой. Здесь нужно заметить, что ионы кристаллической решетки находятся в колебательном движении, следовательно, они занимают пространство, ограниченное не их размером, а размахом амплитуды их колебаний. Теперь нужно задуматься о том, увеличение температуры металла. Дело в том, что сущность температуры как раз и составляют колебания ионов кристаллической решетки, а также тепловое движение свободных электронов. Таким образом, увеличивая температуру, мы увеличиваем амплитуду колебаний ионов кристаллической решетки, а значит, создаем большее препятствие направленному движению электронов. Вследствие этого сопротивление проводника увеличивается.

С другой стороны, при увеличении температуры проводника увеличивается и тепловое движение электронов. Это означает, что их движение становится все более хаотичным, чем направленным. Чем больше температура металла, тем больше проявляют себя степени свободы, направление которых не совпадает с направлением электрического поля. Это обуславливает также большее количество столкновений свободных электронов с ионами кристаллической решетки. Таким образом, термосопротивление проводника обусловлено не только тепловым движением свободных электронов, но и тепловым колебательным движением ионов кристаллической решетки, которое становится все более заметным при повышении температуры металла.

Из всего сказанного можно сделать вывод о том, что лучшие проводники являются «холодными». Именно по этой причине сверхпроводники, сопротивление которых равняется нулю, содержат при крайне низких температурах, исчисляемых единицами Кельвина.

Видео по теме

Совет 3: Температурный датчик: принцип действия и сфера применения

Нынешнее оборудование, автоматика и автомобилестроение вряд ли обойдутся без всякого рода контроллеров. К такому виду устройств можно отнести и термодатчики, сфера применения которых неограниченна.

Устройство

Термодатчик – это механизм, фиксирующий температуру среды, в которой он находится и передающий ее на приборную панель либо в блок управления. Наиболее часто подобные устройства идут в паре с блоком управления, ведь помимо того, что датчик сообщает показатели, их еще нужно обработать и произвести необходимые манипуляции. Большинство современных термодатчиков имеют электронное наполнение, их принцип действия основывается на передаче электрических импульсов от датчика к фиксирующему прибору. Конструктивно датчики можно разделить на несколько типов.

1. Терморезистивный датчик. Подобные устройства работают по принципу изменения электросопротивления проводника при возникновении колебаний температуры. Эти датчики просты в применении, они очень надежны, чувствительны, более точны.

2. Полупроводниковые термодатчики устроены по принципу реагирования на трансформацию характеристик (р-n) перехода под воздействием температуры. Серия таких датчиков очень проста в своей конструкции и имеет отличное соотношение цены и долговечности.

3. Термоэлектрические датчики, или как их еще называют термопары. Этот тип датчиков работает на эффекте разности температуры пары проводников, которые находятся в разных средах. Благодаря этому, в замкнутой цепи этой пары проводников возникает импульс, датчики сигнализируют о смене температуры относительно друг друга. Эти устройства не дают такой точности, как их вышеописанные коллеги, и конструктивно имеют более громоздкий механизм.

4. Пирометры. Это датчики бесконтактного типа, они фиксируют температуру близ находящегося предмета. У этого вида приборов большой плюс в том, что они могут работать на расстоянии от механизма, в котором необходимо зафиксировать показатели температур.

5. Датчики акустические. Принцип работы основывается на изменении скорости звука в атмосфере при изменении температуры среды, в которой находиться датчик. Такие устройства применяют в средах, где невозможно использование контактных датчиков температуры.

6. Пьезоэлектрические датчики. Смысл устройства следующий: на кварцевую основу, из которой состоит сам датчик, подают определенную серию импульсов, таким образом, с изменением температуры этот материал имеет разную частоту расширения.

Применение

Все виды термодатчиков можно встретить в повседневной жизни. Датчиками оборудуют лифты многоэтажных домов, чтобы не перегреть двигатель лифта в случае возникновения нагрузки. Используют в автомобилях для контроля рабочей температуры мотора и недопущения его закипания. В домашних холодильниках датчик работает в паре с блоком управления, который дает команду включать и выключать агрегат холодильника в зависимости от температуры, фиксируемой датчиком. И еще много каких примеров существует, где в работе оборудования или прибора участвует подобный механизм. Данные устройства в значительной мере облегчают жизнь человеку, только мало кто об этом думает. Приятно, когда машина делает какую-то операцию без участия человека.

В переводе с греческого языка означает «измерять тепло». История изобретения термометра берет начало с 1597 года, когда Галилей создал термоскоп – шарик с припаянной трубкой – для определения степени нагретости воды. Этот прибор не имел шкалы, а его показания зависели от атмосферного давления. С развитием науки термометр видоизменялся. Жидкостный термометр впервые был упомянут в 1667 году, а в 1742 году шведский физик Цельсий создал термометр со шкалой, в которой точка 0 соответствовала температуре замерзания воды, а 100 – температуре ее кипения.

Мы часто пользуемся термометром для определения температуры воздуха на улице или температуры тела, однако этим применение термометра вовсе не ограничивается. На сегодняшний день существует множество способов измерить температуру вещества, а современные термометры совершенствуются до сих пор. Опишем наиболее распространенные типы измерителей температуры.

Принцип действия данного типа термометров основан на эффекте расширения жидкости при нагревании. Термометры, у которых в качестве жидкости используется ртуть, часто применяются в медицине для измерения температуры тела. Несмотря на токсичность ртути, ее использование позволяет определять температуру с большей точностью по сравнению с другими жидкостями, так как расширение ртути происходит по линейному закону. В метеорологии используют термометры на спирту. Это связано в первую очередь с тем, что ртуть загустевает при значении 38 °С и не годится для измерения более низких температур. Диапазон жидкостных термометров в среднем составляет от 30 °С до +600 °С, а точность не превышает одну десятую долю градуса.

Газовый термометр

Газовые термометры работают по тому же принципу, что и жидкостные, только в качестве рабочего вещества в них используется инертный газ. Этот тип термометра является аналогом манометра (прибора для измерения давления), шкала которого градуируется в единицах температуры. Основным преимуществом газового термометра является возможность измерения температур около абсолютного нуля (его диапазон составляет от 271 °С до +1000 °С). Предельно достижимая точность измерения составляет 2*10 -3 °С. Получение высокой точности газового термометра является сложной задачей, поэтому такие термометры не используются в лабораторных измерениях, а применяются для первичного определения температуры вещества.

Этот вид термометров работает по аналогии с газовыми и жидкостными. Температура вещества определяется в зависимости от расширения металлической спирали или ленты из биметалла. Механический термометр отличается высокой надежностью и простотой в использовании. Как самостоятельные приборы такие термометры широкого распространения не получили и в настоящее время используются в основном в качестве устройств для сигнализации и регулирования температуры в системах автоматизации.

Электрический термометр (термометр сопротивления)

В основу работы электрического термометра заложена зависимость сопротивления проводника от температуры. Сопротивление металлов линейно увеличивается с ростом температуры, поэтому именно металлы и используются для создания этого типа термометров. Полупроводники по сравнению с металлами дают большую точность измерений, однако термометры на их основе практически не выпускаются из-за сложностей, связанных с градуировкой шкалы. Диапазон термометров сопротивления напрямую зависит от рабочего металла: например, для меди он составляет от -50 °С до +180 °С, а для платины – от -200 °С до +750 °С. Электрические термометры устанавливают в качестве датчиков температуры на производстве, в лабораториях, на экспериментальных стендах. Они часто комплектуются совместно с другими измерительными устройствами

Также называют термопарным. Термопара представляет из себя контакт двух разных проводников, измеряющих температуру на основе эффекта Зеебека, открытого в 1822 году. Этот эффект состоит в появлении разницы потенциалов на контакте между двумя проводниками при наличии между ними градиента температур. Таким образом, через контакт при изменении температуры начинает проходить электрический ток. Преимуществом термопарных термометров является простота исполнения, широкий диапазон измерений, возможность заземления спая. Однако есть и недостатки: термопара подвержена коррозии и другим химическим процессам со временем. Максимальной точностью обладают термопары с электродами из благородных металлов и их сплавов – платиновые, платинородиевые, палладиевые, золотые. Верхняя граница измерения температуры с помощью термопары составляет 2500 °С, нижняя – около -100 °С. Точность измерения термопарного датчика может достигать 0,01 °С. Термометр на основе термопар незаменим в системах управления и контроля на производстве, а также при измерении температуры жидких, твердых, сыпучих и пористых веществ.

Волоконно-оптический термометр

С развитием технологий изготовления оптоволокна, возникли новые возможности его использования. Датчики на основе оптоволокна проявляют высокую чувствительность к различным изменениям во внешней среде. Малейшее колебание температуры, давления или натяжения волокна приводят к изменениям распространения в нем света. Оптоволоконные датчики температуры часто применяются для обеспечения безопасности на производстве, для пожарного оповещения, контроля герметичности емкостей с огнеопасными и токсичными веществами, обнаружения утечек и т. п. Диапазон таких датчиков не превышает +400 °С, а максимальная точность составляет 0,1 °С.

Инфракрасный термометр (пирометр)

В отличие от всех предыдущих типов термометров, является бесконтактным прибором. Более подробно прочитать про пирометры и его характеристики можно в отдельной на нашем сайте. Технический пирометр способен измерять температуру в диапазоне от 100 °С до 3000 °С, с точностью до нескольких градусов. Инфракрасные термометры удобны не только в условиях производства. Все чаще они применяются для измерения температуры тела. Это связано со многими преимуществами пирометров по сравнению с ртутными аналогами: безопасность использования, высокая точность, минимальное время на измерение температуры.

В завершение отметим, что сейчас сложно представить себе жизнь без этого универсального и незаменимого прибора. Простые термометры можно встретить в быту: они используются для поддержания температуры в утюге, стиральной машине, холодильнике, измерения температуры окружающего воздуха. Более сложные датчики устанавливают в инкубаторах, теплицах, сушильных камерах, на производстве.

Выбор термометра или датчика температуры зависит от сферы его использования, диапазона измерения, точности показаний, габаритных размеров. А в остальном – все зависит от вашей фантазии.


Top